|
Glucagon
(gloo' ka gon).
» Glucagon is a polypeptide hormone that has the property of increasing the concentration of glucose in the blood. It is obtained from porcine and bovine pancreas glands.
Packaging and storage
Preserve in tight glass containers, under nitrogen, in a refrigerator.
Identification
The retention time of the major peak in the chromatogram of the Test solution corresponds to that in the chromatogram of the Standard solution, as obtained in the test for Chromatographic purity.
Water, Method I
Residue on ignition
Chromatographic purity
Phosphatecysteine buffer solution
Dissolve 18.9 g of monobasic sodium phosphate and 0.327 g of l-cysteine in 970 mL of water, adjust with phosphoric acid to a pH of 2.6, and dilute with water to 1000 mL.
Sample solvent
Transfer 20.0 mL of acetonitrile to a 100-mL volumetric flask, and dilute with 0.01 N hydrochloric acid to volume.
Mobile phase
Mix 270 mL of acetonitrile and 730 mL of Phosphatecysteine buffer solution, and degas.
Standard solution
Dissolve an accurately weighed quantity of USP Glucagon RS in Sample solvent to obtain a solution having a known concentration of about 0.5 mg per mL.
System suitability solution
Dissolve an accurately weighed quantity of USP Glucagon RS in Sample solvent to obtain a solution containing about 0.5 mg per mL. Heat the solution at 75
Test solution
Transfer about 12.5 mg of Glucagon, accurately weighed, to a 25-mL volumetric flask, and dissolve in Sample solvent to obtain a solution containing about 0.5 mg per mL.
Chromatographic system (see Chromatography
Procedure
Separately inject equal volumes (about 50 µL) of the Standard solution and the Test solution into the chromatograph, record the chromatograms, and measure the peak responses. Calculate the percentage of each impurity in the portion of Glucagon taken by the formula:
100(ri / rs)
in which ri is the peak response for each individual impurity obtained from the Test solution; and rs is the sum of the responses of all the peaks: not more than 2.5% of any individual impurity is found; and not more than 10.0% of total impurities is found.
Nitrogen content, Method II
Zinc content
Assay
[noteAll buffers have a final pH of 7.4, unless otherwise indicated. The concentration range of the Standard preparations and the Assay preparations may be modified to fall within the linear range of the Assay. The calculations should be adjusted accordingly. Alternatively, full curve analysis using validated nonlinear statistical methods can be used, provided that similarity is demonstrated when comparing the responses of the Standard preparations and the Assay preparations.]
hepatocyte preparation
Calcium-free perfusion buffer with dextrose
Prepare a solution containing, in each L, 7.92 g of sodium chloride, 0.35 g of potassium chloride, 1.80 g of dextrose, 0.19 g of edetic acid, and 2.38 g of N-2-hydroxyethylpiperazine-N¢-2-ethanesulfonic acid. Oxygenate prior to circulation.
Collagenase buffer
Prepare a solution containing, in each L, 3.62 g of sodium chloride, 23.83 g of N-2-hydroxyethylpiperazine-N¢-2-ethanesulfonic acid, 0.35 g of potassium chloride, 0.52 g of calcium chloride, and 1.8 g of dextrose. Adjust to a pH of 7.6, and oxygenate. Immediately before perfusion, dissolve a quantity of collagenase in this solution to obtain a concentration of 0.02% to 0.05%.
Wash buffer
Prepare a solution containing, in each L, 7.92 g of sodium chloride, 0.35 g of potassium chloride, 0.19 g of edetic acid, 2.38 g of N-2-hydroxyethylpiperazine-N¢-2-ethanesulfonic acid, 0.22 g of calcium chloride, and 0.12 g of magnesium sulfate.
Incubation buffer
Prepare a solution containing, in each L, 6.19 g of sodium chloride, 0.35 g of potassium chloride, 0.22 g of calcium chloride, 0.12 g of magnesium sulfate, 0.16 g of monobasic potassium phosphate, 11.915 g of N-2-hydroxyethylpiperazine-N¢-2-ethanesulfonic acid, and 1% bovine serum albumin (BSA). Adjust to a pH of 7.5.
Test animals
Male Sprague-Dawley rats are maintained on a standard rat chow diet and freely given water. On the morning of the test, select a healthy rat weighing approximately 300 g, and administer 100 Units of Heparin Sodium subcutaneously.
Procedure
[noteConduct this procedure in the morning to ensure that the rat has optimal glycogen in its liver. ] Anesthetize the rat with an appropriate anesthetic. Open the abdominal cavity, and isolate the portal vein. Insert an angiocatheter connected to a perfusion pump, and tie into the portal vein at the general location of the lienal branch. Start the perfusion (25 mL per minute) in situ with Calcium-free perfusion buffer with dextrose, equilibrated with oxygen, at a temperature of 37
Suitability
The concentrations of cells may vary due to the collagenase activity and the viability of the hepatocytes. To check cell viability and to determine viable cell concentration, dilute duplicate 100-µL aliquots of cell suspension with 400 µL of Wash buffer and 500 µL of isotonic 0.4% trypan blue. The aliquots are counted in a hemocytometer. The cells are suspended in Incubation buffer to obtain a viable cell concentration of not less than 3 × 106 per mL. Count several distinct fields. [noteViable cells are those cells that exclude the trypan blue. ]
negative control solution
Prepare a solution containing 0.5% BSA in sterile water.
incubation flasks
Use 25-mL conical flasks, the bottoms of which have been heated and pushed inward to form a conically raised center.
standard preparations
In duplicate, dissolve a suitable quantity of USP Glucagon RS, accurately measured, in 0.01 N hydrochloric acid or other suitable diluent to obtain a solution containing 1.0 USP Glucagon Unit per mL. All dilutions thereafter are made using 0.5% BSA (w/v) in water. Accurately dilute measured volumes of each solution with Negative control solution to obtain five concentrations200, 100, 50, 25, and 12.5 micro-Units per mLof each solution (Standard preparations). Pipet 0.2 mL of each Standard preparation into separate Incubation flasks. Pipet 0.2 mL of Negative control solution into each of two flasks (Negative control solutions 1 and 2). Then add the hepatocytes into each of the 12 flasks.
assay preparations
Using accurately weighed quantities of Glucagon, proceed as directed for Standard preparations.
d-glucose determination
Standard stock solution
Transfer 2.0 g of USP Dextrose RS, accurately weighed, to a 200-mL volumetric flask, and dissolve in and dilute with saturated benzoic acid solution to volume.
Standard solutions
Transfer suitable quantities of Standard stock solution to three flasks, and dilute with saturated benzoic acid solution to obtain solutions having known concentrations of 0.5, 1.0, and 1.5 times the typical sample glucose concentration.
Potassium ferrocyanide solution
Dissolve 1.25 g of trihydrate potassium ferrocyanide in 125 mL of Sterile Water for Injection.
System suitability
Analyze the Potassium ferrocyanide solution, the Standard solutions, and five replicates of the middle Standard solution. Prepare a standard curve using the Standard solutions as directed for Procedure: the relative standard deviation of the standard curve is not more than 2.0%; the response of the Potassium ferrocyanide solution is not more than 30 mg per L; and the relative standard deviation is not more than 2.0% for the replicate analyses of the middle Standard solution.
procedure
Dispense 5 mL of Hepatocyte preparation into the special incubation flasks in sequence from high glucagon concentration to low glucagon concentration, alternating the Standard preparations with the Assay preparations. The flasks are swirled in an orbiting water bath at 125 rpm at 30
To conform to the linear range of the instrument being used, it may be necessary to adjust by dilution each of the preparations. Use a glucose analyzer that has demonstrated appropriate specificity, accuracy, precision, and linear response over the range of concentrations being determined. [noteA suitable analyzer may use an immobilized, oxidase-enzyme membrane or jacket-generating hydrogen peroxide, which is then detected at the electrode. ] Perform the glucose analysis in the following sequence: Negative control solution 1, Standard preparations, Assay preparations, and Negative control solution 2. Determine the percentage of glucose against the Negative control solution for each preparation.
calculations
Linearity test
Use an analysis of variance (ANOVA) with one sample assayed against a standard, and using two replicates each, construct a table (see Table 1). Compare the value of the ratio MSNL/MSRES1 to a critical value obtained from a table for an F distribution with m 2 and 3m 3 degrees of freedom, where m is the number of dose levels for each preparation. If the ratio MSNL/MSRES1 does not indicate the presence of significant nonlinearity (ratio value is lower than the critical value), then proceed to the test for parallelism. If the ratio exceeds the critical value (significance level of 0.025), the nonlinearity is statistically significant and the test is repeated, discarding the results from either the highest or lowest dose of both the Standard preparations and the Assay preparations (four dose levels). If the ratio MSNL/MSRES1 does not indicate the presence of significant nonlinearity, then proceed to the test for parallelism.
Parallelism test
Compare the ratio MSNP/MSRES2 to a critical value obtained from an F distribution having 1 and 4m 5 degrees of freedom. If the ratio MSNP/MSRES2 does not indicate the presence of significant nonparallelism, then the assay is considered valid. Use the appropriate dose levels for the estimation of the relative potency.
Relative potency
Calculate the relative potency, R, of the Assay preparations as compared with the Standard preparations as follows.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
[noteFor confidence limits having other probability levels (i.e., 100(1
and calculate
ML = ( M
and
MU = ( M + F)/(1
where M is the log potency and ML and MU are the log potency lower and upper confidence limits. The lower and upper confidence limits for the relative potency, R, are given by
RL = antilog ( ML)
RU = antilog ( MU)
It meets the requirements if the potency is between 0.8 and 1.25 USP Glucagon Units per mg, and the confidence interval width at P = 0.95 does not exceed 45% of the computed potency. Repeat the assay if the confidence interval width exceeds 45% of the computed potency.
Table 1.
[notesThis analysis pertains to one sample assayed against a standard, using two replicates each. ]
The number of dose levels for each preparation is denoted by m.
Table 2 gives the equations for calculating the SS terms.
In each row of the ANOVA table, the MS is obtained by dividing the SS term by the degrees of freedom.
Auxiliary Information
Please check for your question in the FAQs before contacting USP.
USP35NF30 Page 3342
Pharmacopeial Forum: Volume No. 37(4)
|