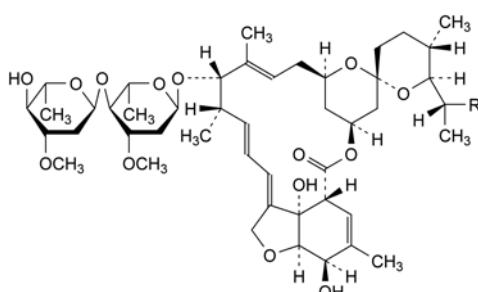


F. 2-butyl-4-[4-[4-[[*cis*-2-(2,4-dichlorophenyl)-2-(1*H*-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2,4-dihydro-3*H*-1,2,4-triazol-3-one,



G. 4-[4-[4-[[*cis*-2-(2,4-dichlorophenyl)-2-(1*H*-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2-[[*cis*-2-(2,4-dichlorophenyl)-2-(1*H*-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methyl]-2,4-dihydro-3*H*-1,2,4-triazol-3-one.

01/2008:1336
corrected 6.0

IVERMECTIN

Ivermectinum

Component	R	Molecular formula	M_r
H_2B_{1a}	CH_2-CH_3	$C_{48}H_{74}O_{14}$	875
H_2B_{1b}	CH_3	$C_{47}H_{72}O_{14}$	861

Ivermectin B1a: [70161-11-4]

Ivermectin B1b: [70288-86-7]

DEFINITION

Mixture of (2a*E*,4*E*,5'*S*,6*S*,6'*R*,7*S*,8*E*,11*R*,13*R*,15*S*,17a*R*,20*R*,20a*R*,20b*S*)-7-[[2,6-dideoxy-4-*O*-(2,6-dideoxy-3-*O*-methyl- α -L-*arabino*-hexopyranosyl)-3-*O*-methyl- α -L-*arabino*-hexopyranosyl]oxy]-20,20b-dihydroxy-5',6,8,19-tetramethyl-6'-[(1*S*)-1-methylpropyl]-3',4',5',6',7,10,11,14,15,17a,20,20a,20b-tetradecahydrospiro[11,15-methano-2*H*,13*H*,17*H*-furo[4,3-*pq*][2,6]benzodioxacyclooctadecene-13,2'-[2*H*]pyran]-17-one (or 5-*O*-demethyl-22,23-dihydroavermectin A_{1a}) (component H₂B_{1a}) and (2a*E*,4*E*,5'*S*,6*S*,6'*R*,7*S*,8*E*,11*R*,13*R*,15*S*,17a*R*,20*R*,20a*R*,20b*S*)-7-[[2,6-dideoxy-4-*O*-(2,6-dideoxy-3-*O*-methyl- α -L-*arabino*-hexopyranosyl)-3-*O*-methyl- α -L-*arabino*-hexopyranosyl]oxy]-20,20b-dihydroxy-5',6,8,19-tetramethyl-6'-(1-methylethyl)-3',4',5',6',7,10,11,14,15,17a,20,20a,20b-tetradecahydrospiro[11,15-methano-2*H*,13*H*,17*H*-furo[4,3-2-*pq*][2,6]benzodioxacyclooctadecene-13,2'-[2*H*]pyran]-17-one (or 5-*O*-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl)-22,23-dihydroavermectin A_{1a}) (component H₂B_{1b}).

Semi-synthetic product derived from a fermentation product.

Content:

– ivermectin (H₂B_{1a} + H₂B_{1b}): 95.0 per cent to 102.0 per cent (anhydrous substance),

– ratio H₂B_{1a}/(H₂B_{1a} + H₂B_{1b}) (areas by liquid chromatography): minimum 90.0 per cent.

CHARACTERS

Appearance: white or yellowish-white, crystalline powder, slightly hygroscopic.

Solubility: practically insoluble in water, freely soluble in methylene chloride, soluble in alcohol.

IDENTIFICATION

A. Infrared absorption spectrophotometry (2.2.24).

Comparison: ivermectin CRS.

B. Examine the chromatograms obtained in the assay.

Results: the retention times and sizes of the 2 principal peaks in the chromatogram obtained with the test solution are similar to those of the 2 principal peaks in the chromatogram obtained with reference solution (a).

TESTS

Appearance of solution. The solution is clear (2.2.1) and not more intensely coloured than reference solution BY₇ (2.2.2, *Method II*).

Dissolve 1.0 g in 50 mL of *toluene* R.

Specific optical rotation (2.2.7): -17 to -20 (anhydrous substance).

Dissolve 0.250 g in *methanol* R and dilute to 10.0 mL with the same solvent.

Related substances. Liquid chromatography (2.2.29).

Test solution. Dissolve 40.0 mg of the substance to be examined in *methanol* R and dilute to 50.0 mL with the same solvent.

Reference solution (a). Dissolve 40.0 mg of ivermectin CRS in *methanol* R and dilute to 50.0 mL with the same solvent.

Reference solution (b). Dilute 1.0 mL of reference solution (a) to 100.0 mL with *methanol* R.

Reference solution (c). Dilute 5.0 mL of reference solution (b) to 100.0 mL with *methanol* R.

Column:

- size: $l = 0.25$ m, $\varnothing = 4.6$ mm,
- stationary phase: octadecylsilyl silica gel for chromatography R (5 μ m).

Mobile phase: water R, *methanol* R, acetonitrile R (15:34:51 V/V/V).

Flow rate: 1 mL/min.

Detection: spectrophotometer at 254 nm.

Injection: 20 μ L.

System suitability:

- **resolution:** minimum of 3.0 between the first peak (component H₂B_{1b}) and the second peak (component H₂B_{1a}) in the chromatogram obtained with reference solution (a),
- **signal-to-noise ratio:** minimum of 10 for the principal peak in the chromatogram obtained with reference solution (c),
- **symmetry factor:** maximum of 2.5 for the principal peak in the chromatogram obtained with reference solution (a).

Limits:

- **impurity with a relative retention of 1.3 to 1.5** with reference to the principal peak: not more than 2.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (2.5 per cent),
- **any other impurity** (apart from the 2 principal peaks): not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (1 per cent),
- **total:** not more than 5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (5 per cent),
- **disregard limit:** area of the principal peak in the chromatogram obtained with reference solution (c) (0.05 per cent).

Ethanol and formamide. Gas chromatography (2.2.28).

Internal standard solution. Dilute 0.5 mL of *propanol R* to 100 mL with *water R*.

Test solution. In a centrifuge tube, dissolve 0.120 g of the substance to be examined in 2.0 mL of *m-xylene R* (if necessary heat in a water-bath at 40–50 °C). Add 2.0 mL of *water R*, mix thoroughly and centrifuge. Remove the upper layer and extract it with 2.0 mL of *water R*. Discard the upper layer and combine the aqueous layers. Add 1.0 mL of the internal standard solution. Centrifuge and discard any remaining *m-xylene*.

Reference solution (a). Dilute 3.0 g of *ethanol R* to 100.0 mL with *water R*.

Reference solution (b). Dilute 1.0 g of *formamide R* to 100.0 mL with *water R*.

Reference solution (c). Dilute 5.0 mL of reference solution (a) and 5.0 mL of reference solution (b) to 50.0 mL with *water R*. Introduce 2.0 mL of this solution into a centrifuge tube, add 2.0 mL of *m-xylene R*, mix thoroughly and centrifuge. Remove the upper layer and extract it with 2.0 mL of *water R*. Discard the upper layer and combine the aqueous layers. Add 1.0 mL of the internal standard solution. Centrifuge and discard any remaining *m-xylene*.

Reference solution (d). Dilute 10.0 mL of reference solution (a) and 10.0 mL of reference solution (b) to 50.0 mL with *water R*. Treat as prescribed for reference solution (c) (from "Introduce 2.0 mL of this solution...").

Column:

- *material:* fused silica,
- *size:* $l = 30 \text{ m}$, $\varnothing = 0.53 \text{ mm}$,
- *stationary phase:* *macrogol 20 000 R* (film thickness $1 \mu\text{m}$).

Carrier gas: *helium for chromatography R*.

Flow rate: 7.5 mL/min.

Split ratio: 1:10.

Temperature:

	Time (min)	Temperature (°C)
Column	0 - 2	50 → 80
	2 - 8	80 → 240
Injection port		220
Detector		280

Detection: flame ionisation.

Injection: 1 μL ; inject the test solution and reference solutions (c) and (d).

Limits:

- *ethanol:* maximum 5.0 per cent,
- *formamide:* maximum 3.0 per cent.

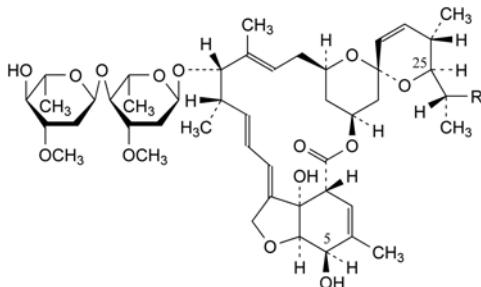
Heavy metals (2.4.8): maximum 20 ppm.

1.0 g complies with limit test C. Prepare the standard using 2 mL of *lead standard solution (10 ppm Pb) R*.

Water (2.5.12): maximum 1.0 per cent, determined on 0.50 g.

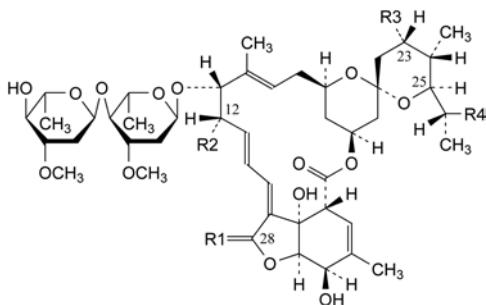
Sulfated ash (2.4.14): maximum 0.1 per cent, determined on 1.0 g.

ASSAY


Liquid chromatography (2.2.29) as described in the test for related substances.

Injection: 20 μL ; inject the test solution and reference solution (a).

Calculate the percentage contents of ivermectin ($\text{H}_2\text{B}_{1a} + \text{H}_2\text{B}_{1b}$) and the ratio $\text{H}_2\text{B}_{1a}/(\text{H}_2\text{B}_{1a} + \text{H}_2\text{B}_{1b})$ using the declared contents of *ivermectin CRS*.

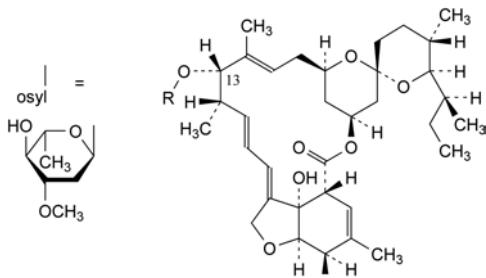

STORAGE

In an airtight container.

IMPURITIES

A. $\text{R} = \text{C}_2\text{H}_5$: 5-*O*-demethylavermectin A_{1a} (avermectin B_{1a}),

B. $\text{R} = \text{CH}_3$: 5-*O*-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl)avermectin A_{1a} (avermectin B_{1b}),

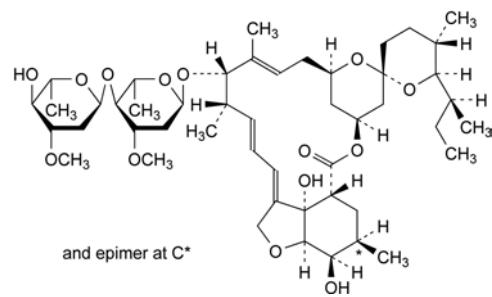


C. $\text{R}1 = \text{H}_2$, $\text{R}2 = \text{CH}_3$, $\text{R}3 = \text{OH}$, $\text{R}4 = \text{C}_2\text{H}_5$: (23S)-5-*O*-demethyl-23-hydroxy-22,23-dihydroavermectin A_{1a} (avermectin B_{2a}),

D. $\text{R}1 = \text{O}$, $\text{R}2 = \text{CH}_3$, $\text{R}3 = \text{H}$, $\text{R}4 = \text{C}_2\text{H}_5$: 5-*O*-demethyl-28-oxo-22,23-dihydroavermectin A_{1a} (28-oxoH₂B_{1a}),


E. $\text{R}1 = \text{H}_2$, $\text{R}2 = \text{C}_2\text{H}_5$, $\text{R}3 = \text{H}$, $\text{R}4 = \text{C}_2\text{H}_5$: 5-*O*,12-didemethyl-12-ethyl-22,23-dihydroavermectin A_{1a} (12-demethyl-12-ethyl-H₂B_{1a}),

F. $\text{R}1 = \text{H}_2$, $\text{R}2 = \text{C}_2\text{H}_5$, $\text{R}3 = \text{H}$, $\text{R}4 = \text{CH}_3$: 5-*O*,12-didemethyl-25-de(1-methylpropyl)-12-ethyl-25-(1-methylethyl)-22,23-dihydroavermectin A_{1a} (12-demethyl-12-ethyl-H₂B_{1b}),


G. $\text{R} = \text{H}$: (6*R*,13*S*,25*R*)-5-*O*-demethyl-28-deoxy-6,28-epoxy-13-hydroxy-25-[(1*S*)-1-methylpropyl]milbemycin B (H₂B_{1a} aglycone),

H. $\text{R} = \text{osyl}$: 4'-*O*-de(2,6-dideoxy-3-*O*-methyl- α -L-*arabinopyranosyl*)-5-*O*-demethyl-22,23-dihydroavermectin A_{1a},

I. $R = C_2H_5$: 2,3-didehydro-5-O-demethyl-3,4,22,23-tetrahydroavermectin A_{1a} ($\Delta^{2,3} H_2B_{1a}$),

J. $R = CH_3$: 2,3-didehydro-5-O-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl)-3,4,22,23-tetrahydroavermectin A_{1a} ($\Delta^{2,3} H_2B_{1b}$),

K. (4R) and (4S)-5-O-demethyl-3,4,22,23-tetrahydroavermectin A_{1a} (H_4B_{1a} isomers).