Acceptance criteria: NMT 1.0% is retained on the No. 100 sieve, and NMT 30.0% is retained on the No. 200 sieve.

- **Loss on Drying (731)**
 Analysis: Dry at 105°C for 6 h.
 Acceptance criteria: NMT 10.0%

Additional Requirements
- **Packaging and Storage:** Preserve in well-closed containers.
- **USP Reference Standards (11)**
 USP Polacrillin Potassium RS

Poloxamer

![Poloxamer structure](image)

Definition

Poloxamer is a synthetic block copolymer of ethylene oxide and propylene oxide. It is available in several types, conforming to the requirements shown in the following table.

<table>
<thead>
<tr>
<th>Poloxamer</th>
<th>Physical Form</th>
<th>Average Molecular Weight (% Oxyethylene)</th>
<th>Weight (%) Oxyethylene</th>
<th>Unsaturation (mEq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>Liquid</td>
<td>2090–2360</td>
<td>46.7 ± 1.9</td>
<td>0.020 ± 0.008</td>
</tr>
<tr>
<td>188</td>
<td>Solid</td>
<td>7680–9510</td>
<td>81.8 ± 1.9</td>
<td>0.026 ± 0.008</td>
</tr>
<tr>
<td>237</td>
<td>Solid</td>
<td>6840–8830</td>
<td>72.4 ± 1.9</td>
<td>0.034 ± 0.008</td>
</tr>
<tr>
<td>338</td>
<td>Solid</td>
<td>12,700–17,400</td>
<td>83.1 ± 1.7</td>
<td>0.031 ± 0.008</td>
</tr>
<tr>
<td>407</td>
<td>Solid</td>
<td>9840–14,600</td>
<td>73.2 ± 1.7</td>
<td>0.048 ± 0.017</td>
</tr>
</tbody>
</table>

Polyethylene-polypropylene glycol [9003-11-6].

Identification

Poloxamer is a synthetic block copolymer of ethylene oxide and propylene oxide. It may contain a suitable antioxidant.

Assay

- **Average Molecular Weight**
 Phthalic anhydride-pyridine solution: Dissolve 144 g of phthalic anhydride in freshly opened or freshly distilled pyridine containing less than 0.1% of water, and dilute with pyridine to 1000 mL. Protect from light, and allow to stand overnight. To verify that the Phthalic anhydride-pyridine solution has adequate strength, pipet 10 mL into a 250-mL conical flask, add 25 mL of pyridine and 50 mL of water, and after 15 min add 0.5 mL of a solution of phenolphthalein in pyridine (1 in 100), then titrate with 0.5 N sodium hydroxide VS: it consumes between 37.6 and 40.0 mL of 0.5 N sodium hydroxide.

 Analysis: Weigh a suitable quantity, not exceeding 15 g, of Poloxamer, calculated by multiplying the average molecular weight by 0.004, into a glass-stoppered, 250-mL boiling flask. Carefully pipet 25 mL of Phthalic anhydride-pyridine solution into the flask, touching the tip of the drained pipet to the protrusion in the flask. Add a few glass beads, and swirl to dissolve the specimen. Pipet 25 mL of Phthalic anhydride-pyridine solution into a second, glass-stoppered, conical flask, add a few glass beads, and use as the reagent blank. (An additional 25-mL portion of pyridine may be added to both the test specimen and reagent blank, before refluxing, if necessary to ensure fluidity.) Heat both flasks, fitted with suitable reflux condensers, and allow to reflux for 1 h. Allow to cool, and pour two 10-mL portions of pyridine through each condenser. Remove the flasks from the condensers, add 10 mL of water to each, insert the stoppers, swirl, and allow to stand for 10 min. To each flask add 50.0 mL of 0.66 N sodium hydroxide and 0.5 mL of a solution (1 in 100) of phenolphthalein in pyridine. Titrate with 0.5 N sodium hydroxide VS to a light pink endpoint that persists for NLT 15 s.

 Calculate the average molecular weight:

 \[
 \text{Result} = 2000 \times \frac{W}{(V_b - V_s) \times N}
 \]

 \[
 W = \text{weight of the sample taken (g)}
 \]

 \[
 V_b = \text{volume of 0.5 N sodium hydroxide VS consumed by the blank (mL)}
 \]

 \[
 V_s = \text{volume of 0.5 N sodium hydroxide VS consumed by the residual acid in the test solution (mL)}
 \]

 \[
 N = \text{actual normality of the 0.5 N sodium hydroxide VS}
 \]

 Acceptance criteria: See the table in the Definition.

- **Weight Percent Oxyethylene**
 Solvent: Use deuterated water or deuterochloroform.
 NMR Reference: Use sodium 2,2-dimethyl-2-silapentane-5-sulfonate (for deuterated water) or tetramethylsilane (for deuterochloroform).

 Sample Solution: Dissolve 0.1–0.2 g of Poloxamer in deuterated water containing 1% of sodium 2,2-dimethyl-2-silapentane-5-sulfonate (for deuterated water) or tetramethylsilane (for deuterochloroform) containing 1% of tetramethylsilane as the solvent.

 Instrumental Conditions
 (See Nuclear Magnetic Resonance [761], Relative Method of Quantitation)
 Mode: Nuclear magnetic spectrometry
 Sample Size: 0.5–1.0 mL of the Sample solution
 Analysis:
 Sample: Sample solution
 Transfer the Sample solution to a standard 5-mm NMR spinning tube, and if deuterochloroform is the solvent, add 1 drop of deuterated water, and shake the tube. Scan the region at 0–5 ppm, and use the calculation formulas specified below. Record as \(A_1\), the average area of the doublet appearing at about 1.08 ppm, representing the methyl groups of the oxypropylene units, and record as \(A_2\), the average area of the composite band at a range of 3.2–3.8 ppm, due to the CHO groups of the oxyethylene and oxypropylene units and also the CHO groups of the oxypropylene units, with reference to the sodium 2,2-dimethyl-2-silapentane-5-sulfonate or tetramethylsilane singlet at 0 ppm.

 Calculate the percentage of oxyethylene, by weight, in the Poloxamer taken:

 \[
 \alpha = \frac{A_2}{A_1} - 1
 \]
\[A_2 = \text{average area of the composite band at a range of 3.2–3.8 ppm} \]
\[A_1 = \text{average area of the doublet appearing at about 1.08 ppm} \]

Result = \(3300 \times \alpha/(33 \times \alpha + 58)\)

Acceptance criteria: See the table in the **Definition**.

- **Unsaturation**
 - **Solution A:** Place 50 g of mercuric acetate in a 1000-mL volumetric flask, and dissolve with 900 mL of methanol to which 0.5 mL of glacial acetic acid has been added. Dilute with methanol to volume, and mix. Discard the solution if it is yellow. If it is turbid, filter it. Discard it if it is still turbid. Use fresh reagents if it is necessary to repeat the preparation of the solution. Protect the solution from light by storing it in an amber bottle in the dark.

Sample: 15.0 g

Analysis: Transfer the **Sample** to a 250-mL conical flask. Pipet 50 mL of **Solution A** into the flask, and mix on a magnetic stirrer until solution is complete. Allow to stand for 30 min with occasional swirling. Add 10 g of sodium bromide crystals, and stir on a magnetic stirrer for 2 min. Without delay, add 1 mL of phenolphthalein TS, and titrate the liberated acetic acid with 0.1 N methanolic potassium hydroxide VS. Perform a blank determination. Determine also the initial acidity as follows. Dissolve 15.0 g of Poloxamer in 75 mL of methanol that has been neutralized with methanolic potassium hydroxide to the phenolphthalein endpoint. Add 1 mL of phenolphthalein TS, and titrate with the same 0.1 N methanolic potassium hydroxide VS under a nitrogen sweep.

Calculate the unsaturation, in mEq/g:

\[\text{Result} = (V_U - V_A - V_D) \times N/15 \]

Impurities:

- **Heavy Metals, Method I (231):** NMT 20 ppm
- **Limit of Free Ethylene Oxide, Propylene Oxide, and 1,4-Dioxane**

Stripped poloxamer: Place 500 g of Poloxamer 124 into a suitable 3-neck, round-bottom flask equipped with a stirrer, a thermometer, a vacuum outlet, and a heating mantle. Evacuate the flask carefully at room temperature to a pressure of less than 10 mm of mercury, applying the vacuum slowly to avoid excessive foaming due to entrapped gases. After any foaming has subsided, heat the flask to 80° and continue to apply vacuum for 2 h; then cool to room temperature. Shut off the vacuum pump, and introduce nitrogen to bring the flask pressure back to atmospheric pressure. Transfer the **Stripped poloxamer** to a suitable nitrogen-filled container.

Standard solution

[**CAUTION**—Ethylene oxide, propylene oxide, and 1,4-dioxane are toxic and flammable. Prepare these solutions in a well-ventilated fume hood.]

To a tared vial that can be sealed add 50.0 g of **Stripped poloxamer**. Add 60 µL of 1.4-dioxane and 75 µL of propylene oxide from a chilled syringe. Add ethylene oxide, using the following special handling procedure. Ethylene oxide, which is a gas at room temperature, is usually stored in a lecture-type gas cylinder or a small, metal pressure-bomb. Chill the cylinder in a refrigerator before use. Transfer 5 mL of the liquid ethylene oxide to a 100-mL beaker chilled in wet ice. Using a gas-tight syringe that has been chilled in a refrigerator, transfer 15 µL of the liquid ethylene oxide to the mixture. Immediately seal the vial, and shake on a vortex mixer for at least 30 s. Transfer 0.20 g of this solution to a tared vial that can be sealed, and add **Stripped poloxamer** to obtain a **Standard solution** having a final weight of 50.0 g. Each g of this **Standard solution** contains 1 µg of ethylene oxide, 5 µg of propylene oxide, and 5 µg of 1,4-dioxane. Transfer 1.00 ± 0.01 g of this **Standard solution** to a 22-mL pressure headspace vial, and add about 0.01 g of butylated hydroxytoluene. Seal with a silicone septum with or without a pressure-relief star spring and with a pressure-relief aluminum, safety-sealing-cap, and crimp the cap closed with a cap-sealing tool.

Sample solution: Transfer 1.00 ± 0.01 g of Poloxamer into a 22-mL pressure headspace vial, and add 0.01 g of butylated hydroxytoluene. Seal, cap, and crimp as directed for the **Standard solution**.

Chromatographic system

(See Chromatography (621), **System Suitability**.)

Mode: GC (equipped with a balanced-pressure automated headspace sampler)

Detector: Flame ionization

Column: 0.32-mm × 50-m fused-silica capillary; 5-µm layer of stationary phase G27 coating

Temperature

Detector: 250°C

Injector: 250°C

Transfer line: 140°C

Column: See Table 1.

<table>
<thead>
<tr>
<th>Initial Temperature</th>
<th>Temperature Ramp (°C/min)</th>
<th>Final Temperature (°C)</th>
<th>Hold Time at Final Temperature (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>10</td>
<td>240</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>240</td>
<td>10</td>
</tr>
</tbody>
</table>

Carrier gas: Helium

Flow rate: 1.6 mL/min

Injection size: Separately place the vials containing the **Standard solution** and the **Sample solution** in the automated sampler, and start the sequence so that the vial is heated at a temperature of 110° for 30 min before a suitable portion of its headspace is injected into the chromatograph.

Autosampler

Needle-withdrawal time: 0.3 min

Pressurization time: 1 min

Injection time: 0.08 min

Vial pressure: 22 psig with the vial vent off

System suitability

Sample: **Standard solution**

[**NOTE**—The relative retention times for ethylene oxide, propylene oxide, and 1,4-dioxane are about 1.0, 1.3, and 3.8, respectively.]

Suitability requirements

Resolution: NLT 2.0 between ethylene oxide and propylene oxide

Relative standard deviation: NMT 15%

Analysis

Samples: **Standard solution** and **Sample solution**

Calculate the concentrations, in µg/g, of ethylene oxide, propylene oxide, and 1,4-dioxane in the portion of Poloxamer taken:

\[\text{Result} = r_i/r_s \times C \]
Hydrogenated Polydecene

C_{30}H_{62} through C_{70}H_{142}

DEFINITION
Hydrogenated Polydecene is a mixture of saturated, synthetic hydrocarbons in the range C_{30}H_{62} through C_{70}H_{142} made from direct oligomerization of 1-decene (C_{10} alpha olefin). The oligomer mixture may be distilled to fractions of a suitable calculated viscosity and hydrogenated to reach saturation, or it may be hydrogenated to reach saturation and then distilled to the desired viscosity. The requirements for specific gravity, viscosity, and content of decene oligomer differ for the various types of Hydrogenated Polydecene, as set forth in the two tables below. Hydrogenated Polydecene may contain a suitable stabilizer.

SPECIFIC TESTS

- **PH**: (791); 5.0–7.5, in a solution (1 in 40)

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE**: Preserve in tight containers. No storage requirements specified.
- **LABELING**: Label it to state, as part of the official title, the Poloxamer number. Label it to indicate the name and quantity of any antioxidant.
- **USP REFERENCE STANDARDS** (11)
 - USP Poloxamer Liquid RS
 - USP Poloxamer Solid RS

<table>
<thead>
<tr>
<th>Type</th>
<th>Specific Gravity</th>
<th>Kinematic Viscosity Range, Centistokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.814–0.819</td>
<td>16.0–20.0</td>
</tr>
<tr>
<td>II</td>
<td>0.823–0.827</td>
<td>28.0–34.0</td>
</tr>
<tr>
<td>III</td>
<td>0.828–0.832</td>
<td>40.0–52.0</td>
</tr>
</tbody>
</table>

Assay

- **CONTENT OF DECENE OLIGOMER**
 - **System suitability solution**: 10 mg/mL of hexadecane, 10 mg/mL of squalene, and 1 mg/mL of tetradecane in pentane
 - **Sample solution**: Dissolve 0.1 mL of Hydrogenated Polydecene in 10 mL of pentane.
 - **Chromatographic system**
 - **Mode**: GC
 - **Detector**: Flame ionization
 - **Column**: 0.52-mm × 16-m fused-silica capillary; coated with 0.1-mm stationary phase G2
 - **Carrier gas**: Helium
 - **Flow rate**: 10 mL/min
 - **Injection volume**: 2 μL
 - **Temperatures**
 - **Injection port**: 310°
 - **Detector**: 320°
 - **Column**: See Table 1.

<table>
<thead>
<tr>
<th>Initial Temperature (°C)</th>
<th>Ramp (°C/min)</th>
<th>Final Temperature (°C)</th>
<th>Hold Time at Final Temperature (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>5</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>170</td>
<td>—</td>
</tr>
<tr>
<td>170</td>
<td>10</td>
<td>310</td>
<td>18</td>
</tr>
</tbody>
</table>

System suitability

- **Sample**: System suitability solution
 - **NOTE**—The retention time for squalene is about 18 min; the relative retention times for tetradecane, hexadecane, and squalene are about 0.5, 0.6, and 1.0, respectively.

Suitability requirements

- **Resolution**: NLT 2.0 between tetradecane and hexadecane

Relative standard deviation: NMT 2.0% for each peak

Analysis

- **Sample**: Sample solution
 - **NOTE**—The tetramer oligomer has a retention time of about 23 min. The trimer, pentamer, hexamer, and heptamer oligomers, if present, have relative retention times of about 0.8, 1.1, 1.3, and 1.4, respectively, relative to the tetramer.

- **Calculate the percentage of each oligomer present**:

 \[
 \text{Result} = \left(\frac{r_U}{r_T}\right) \times 100
 \]

- **Acceptance criteria**: The decene oligomer content is within the limits specified in the table **Content of Decene Oligomers** in the Definition.

Impurities

- **LIMIT OF NICKEL**
 - **Nickel stock solution**: Immediately before use, dilute an appropriate quantity of organometallic standard\(^1\) with kerosene to prepare a solution containing the equivalent of 1.0 μg/mL of nickel.
 - **Standard solutions**: Transfer 0.5, 1.0, 2.0, and 4.0 mL of Nickel stock solution, respectively, to four identical 10-mL volumetric flasks, dilute the contents of each flask with kerosene to volume, and mix. These Standard

\(^1\) Suitable organometallic standards are available from, e.g., Continental Oil Co., Ponca City, OK (Conostan, 100 ppm), or Merck, D-6100 Darmstadt, Germany (metal in standard oil, 1000 ppm).