

Amlodipine Besylate

$C_{20}H_{25}ClN_2O_5 \cdot C_6H_6O_3S$ 567.05

3,5-Pyridinedicarboxylic acid, 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-, 3-ethyl-5-methyl ester, (\pm)-, monobenzenesulfonate.
3-Ethyl 5-methyl (\pm)-2-[(2-aminoethoxy)methyl]-4-(o-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylate, monobenzenesulfonate [111470-99-6].

Monohydrate 585.07

» Amlodipine Besylate is anhydrous or hydrated and contains not less than 97.0 percent and not more than 102.0 percent of $C_{20}H_{25}ClN_2O_5 \cdot C_6H_6O_3S$, calculated on the anhydrous basis.

Packaging and storage—Preserve in tight containers, protected from light. Store at room temperature.

USP Reference standards (11)—

USP Amlodipine Besylate RS

Labeling—Where it is the hydrated form, the label so indicates.

Identification—

A: Infrared Absorption (197M).

B: The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

Optical rotation (781A): between -0.10° and $+0.10^\circ$, measured at 20° .

Test solution: 10 mg per mL, in methanol.

Water, Method I (921): not more than 0.5% for the anhydrous form. If labeled as the hydrated form, the limit is between 3.1% and 5.0%.

Residue on ignition (281): not more than 0.2%.

Heavy metals, Method II (231): 0.002%.

Related compounds—

TEST 1—

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture.

Test solution—Transfer 140 mg of Amlodipine Besylate to a 2-mL volumetric flask, dissolve in and dilute with methanol to volume, and mix.

System suitability solution—Transfer about 14 mg of USP Amlodipine Besylate RS to a suitable container, dissolve in 0.2 mL of methanol, and mix.

Standard stock solution—Dissolve an accurately weighed quantity of USP Amlodipine Besylate RS in methanol to obtain a solution containing 7.0 mg per mL.

Standard solution 1—Transfer 3.0 mL of the *Standard stock solution* to a 100-mL volumetric flask, dilute with methanol to volume, and mix.

Standard solution 2—Transfer 1.0 mL of the *Standard stock solution* to another 100-mL volumetric flask, dilute with methanol to volume, and mix.

Application volume: 10 μ L.

Developing solvent system—Use the upper layer of a mixture of methyl isobutyl ketone, water, and glacial acetic acid (50:25:25).

Procedure—Proceed as directed for *Thin-Layer Chromatography* under *Chromatography* (621). Dry the plate for 15 minutes at 80° . Examine the plate under UV light at 254 nm and 365 nm. The chromatogram from the *System suitability solution* shows two clearly separated minor spots with R_f values of about 0.18 and 0.22. Compare the intensities of any secondary spots observed in the chromatogram of the *Test solution* with those of the principal spots in the chromatograms of the *Standard solutions*. Any spot obtained from the *Test solution*, except for the principal spot, is not greater in size than the spot obtained from *Standard solution 1* (0.3%), and at most two spots are more intense than the spot obtained from *Standard solution 2* (0.1%).

TEST 2—

pH 3.0 Buffer and Mobile phase—Prepare as directed in the *Assay*.

System suitability solution—Dissolve about 5 mg of Amlodipine Besylate in 5 mL of hydrogen peroxide, and heat at 70° for 45 minutes.

Standard solution—Dissolve an accurately weighed quantity of USP Amlodipine Besylate RS in *Mobile phase* to obtain a solution having a known concentration of about 0.003 mg per mL.

Test solution—Transfer about 50 mg of Amlodipine Besylate, accurately weighed, to a 50-mL volumetric flask, dissolve in and dilute with *Mobile phase* to volume, and mix.

Chromatographic system (see *Chromatography* (621))—Prepare as directed in the *Assay*. Chromatograph the *System suitability solution*, and record the peak responses as directed for *Procedure*: the resolution, R , between amlodipine impurity A and amlodipine is not less than 4.5. [NOTE—For the purpose of identification, the relative retention times are about 0.2 for benzene sulfonate, 0.5 for amlodipine impurity A, and 1.0 for amlodipine. Amlodipine impurity A is 3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-6-methylpyridine-3,5-dicarboxylate.] Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*: the standard deviation for replicate injections is not more than 10.0%.

Procedure—Separately inject equal volumes (about 10 μ L) of the *Standard solution* and the *Test solution* into the chromatograph, record the chromatograms for a period of time that is about 3 times the retention time of amlodipine, and measure the peak responses. Calculate the percentage of each impurity in the portion of Amlodipine Besylate taken by the formula:

$$100(1/F)(C_S / C_T)(r_i / r_S)$$

in which F is the relative response factor, which is equal to 0.5 for amlodipine impurity A and to 1.0 for other impurities; C_S and C_T are the concentrations, in mg per mL, of amlodipine besylate in the *Standard solution* and the *Test solution*, respectively; r_i is the peak response for each impurity obtained from the *Test solution*; and r_S is the peak response for amlodipine besylate obtained from the *Standard solution*: not more than 0.3% of amlodipine impurity A is found, and not more than 0.3% of total other impurities is found. Disregard any peak less than 0.03%, and disregard any peak due to benzene sulfonate.

Assay—

pH 3.0 Buffer—Dissolve 7.0 mL of triethylamine in 800 mL of water. Adjust with phosphoric acid to a pH of 3.0 ± 0.1 , and dilute with water to 1 L.

Mobile phase—Prepare a filtered and degassed mixture of *pH 3.0 Buffer*, methanol, and acetonitrile (50:35:15). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Standard preparation—Dissolve an accurately weighed quantity of USP Amlodipine Besylate RS in *Mobile phase* to obtain a solution having a known concentration of about 0.05 mg per mL.

Assay preparation—Transfer about 50 mg of Amlodipine Besylate, accurately weighed, to a 50-mL volumetric flask, dissolve in and dilute with *Mobile phase* to volume, and mix. Transfer 5.0 mL of this solution to a 100-mL volumetric flask, dilute with *Mobile phase* to volume, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 237-nm detector and a 3.9-mm × 15-cm column that contains packing L1. The flow rate is about 1.0 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 10 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the percentage of $C_{20}H_{25}ClN_2O_5 \cdot C_6H_6O_3S$ in the portion of Amlodipine Besylate taken by the formula:

$$100(C_S/C_U)(r_U/r_S)$$

in which C_S and C_U are the concentrations, in mg per mL, of amlodipine besylate in the *Standard preparation* and the *Assay preparation*, respectively; and r_U and r_S are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Amlodipine Besylate Tablets

DEFINITION

Amlodipine Besylate Tablets contain NLT 90% and NMT 110% of the labeled amount of amlodipine ($C_{20}H_{25}N_2O_5Cl$).

IDENTIFICATION

- **A. ULTRAVIOLET ABSORPTION (197U)**

Standard solution and Sample solution: Prepare as directed in the test for *Dissolution*.

Acceptance criteria: Meet the requirements

- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

- **PROCEDURE**

Buffer: Add 7.0 mL of triethylamine into a 1000-mL flask containing 900 mL of water. Adjust the solution with phosphoric acid to a pH of 3.0 ± 0.1 . Dilute with water to volume, and mix well.

Mobile phase: Methanol, acetonitrile, and *Buffer* (35:15:50)

System suitability solution: 0.02 mg/mL of USP Amlodipine Besylate RS and 0.002 mg/mL of USP Amlodipine Related Compound A RS in *Mobile phase*

Standard solution: 0.02 mg/mL of amlodipine prepared from USP Amlodipine Besylate RS in *Mobile phase*

Sample stock solution: Place 5 Tablets into a 500-mL volumetric flask. Add 50 mL of *Mobile phase* to the flask, and swirl to disintegrate the Tablets. Add 300 mL of *Mobile phase*, insert the stopper into the flask, and shake on a reciprocating shaker for 30 min. Dilute with *Mobile phase* to volume, and mix well.

Sample solution: 0.02 mg/mL of amlodipine from the *Sample stock solution* in *Mobile phase*. Pass the sample through a syringe tip filter of 0.45- μ m pore size.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 237 nm

Column: 3.9-mm × 15-cm; 5- μ m packing L1

Flow rate: 1 mL/min

Injection size: 50 μ L

System suitability

Sample: *System suitability solution*

[NOTE—The run time is about three times the retention of the amlodipine peak.]

Suitability requirements

Resolution: NLT 8.5 between amlodipine and amlodipine related compound A

Tailing factor: NMT 2.0 for both amlodipine and amlodipine related compound A

Relative standard deviation: NMT 1.0% for amlodipine and NMT 5.0% for amlodipine related compound A

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of amlodipine ($C_{20}H_{25}N_2O_5Cl$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of USP Amlodipine Besylate RS in the *Standard solution* (mg/mL)

C_U = nominal concentration of amlodipine in the *Sample solution* (mg/mL)

Acceptance criteria: 90%–110% of the labeled amount of amlodipine ($C_{20}H_{25}N_2O_5Cl$)

PERFORMANCE TESTS

- **DISSOLUTION (711)**

[NOTE—Do not expose any of the solutions to stainless steel because of the degradation of amlodipine.]

Medium: 0.01 N hydrochloric acid; 500 mL

Apparatus 2: 75 rpm. [NOTE—Use paddles covered with Teflon or made of any inert material except stainless steel.]

Time: 30 min

Standard solution: Make appropriate dilutions of USP Amlodipine Besylate RS in *Medium* to obtain the following concentrations: 0.00695 mg/mL for Tablets labeled to contain 2.5 mg; 0.0139 mg/mL for Tablets labeled to contain 5 mg; 0.0278 mg/mL for Tablets labeled to contain 10 mg. These solutions are stable for one day.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Analysis: Determine the amount of amlodipine ($C_{20}H_{25}N_2O_5Cl$) dissolved by using UV absorption at the wavelength of maximum absorbance at about 239 nm on portions of the *Sample solution* in comparison with the *Standard solution*, using a 1-cm quartz cell and the *Medium* as blank.

Calculate the percentage of the labeled amount of amlodipine ($C_{20}H_{25}N_2O_5Cl$) dissolved:

$$\text{Result} = (A_U/A_S) \times (C_S/L) \times D \times (M_{r1}/M_{r2}) \times V \times 100$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

D = dilution factor of the *Sample solution*

M_{r1} = molecular weight of amlodipine, 408.88

M_{r2} = molecular weight of amlodipine besylate, 567.06

V = volume of *Medium*, 500 mL

Tolerances: NLT 75% (Q) of the labeled amount of amlodipine ($C_{20}H_{25}N_2O_5Cl$) is dissolved.

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements