

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.
- **USP REFERENCE STANDARDS (11)**
USP 6-Hydroxynicotinic Acid RS
USP Niacin RS^{2S} (USP35)

Nystatin Vaginal Inserts**DEFINITION**

Nystatin Vaginal Inserts are composed of Nystatin with suitable binders, diluents, and lubricants. Vaginal Inserts contain NLT 90.0% and NMT 140.0% of the labeled amount of USP Nystatin Units.

ASSAY**• Nystatin**

(See *Antibiotics—Microbial Assays* (81).)

Sample stock solution: 400 USP Nystatin Units/mL in dimethylformamide prepared as follows. Blend NLT 5 Vaginal Inserts for 3–5 min in a high-speed blender with a sufficient volume of dimethylformamide to obtain a solution of suitable concentration. Dilute a portion of this solution with dimethylformamide.

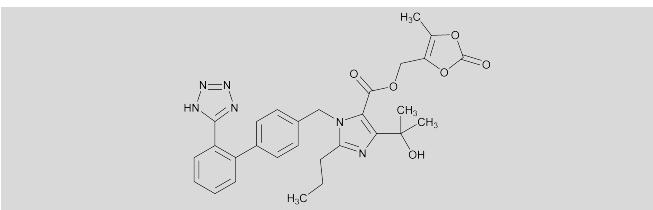
Test dilution: Dilute a volume of the *Sample stock solution* with *Buffer No. 6* to obtain a nystatin concentration assumed to be equal to the median dose level of the standard.

Acceptance criteria: 90.0%–140.0% of the labeled amount of USP Nystatin Units

PERFORMANCE TESTS**Change to read:****• DISINTEGRATION (701)**

Time: 60 min

Analysis: Use the *Procedure for Uncoated Tablets* in the chapter.^{2S} (USP35)


Acceptance criteria: Meets the requirements

SPECIFIC TESTS

• LOSS ON DRYING (731): Dry 100 mg of powdered Vaginal Inserts in a capillary-stoppered bottle in vacuum at a pressure not exceeding 5 mm of mercury at 60° for 3 h; it loses NMT 5.0% of its weight.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers and, where so specified in the labeling, in a refrigerator.
- **USP REFERENCE STANDARDS (11)**
USP Nystatin RS

Add the following:**■Olmesartan Medoxomil**

$C_{29}H_{30}N_6O_6$ 558.59
1H-Imidazole-5-carboxylic acid, 4-(1-hydroxy-1-methyl-ethyl)-2-propyl-1-[(2'-1H-tetrazol-5-yl) [1',1'-biphenyl]-4-yl]methyl-, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl ester [144689-63-4].

DEFINITION

Olmesartan Medoxomil contains NLT 98.5% and NMT 101.5% of $C_{29}H_{30}N_6O_6$, calculated on the anhydrous and solvent-free basis.

IDENTIFICATION

- **A. INFRARED ABSORPTION (197K)**
- **B.** The ratio of the retention time of the major peak to that of the internal standard of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY**• PROCEDURE**

[NOTE—The *Standard solution* and *Sample solution* are stable for 24 h at 5°.]

Diluted phosphoric acid: 0.2% phosphoric acid

Buffer: 0.015 M monobasic potassium phosphate. Adjust the solution with *Diluted phosphoric acid* (w/v) to a pH of 3.4.

Mobile phase: Acetonitrile and *Buffer* (17:33)

Diluent 1: Acetonitrile and water (4:1)

Diluent 2: Acetonitrile and water (2:3)

Internal standard solution: 0.5 mg/mL of 4-hydroxybenzoic acid isobutyl ester in *Diluent 2*. [NOTE—This solution is stable for 1 month at room temperature.]

Standard stock solution: 1 mg/mL of USP Olmesartan Medoxomil RS in *Diluent 1*

Standard solution: 0.05 mg/mL of USP Olmesartan Medoxomil RS from the *Standard stock solution* and 0.025 mg/mL of *p*-hydroxybenzoic acid isobutyl ester from the *Internal standard solution* in *Diluent 2*

Sample stock solution: 1 mg/mL of Olmesartan Medoxomil in *Diluent 1*

Sample solution: 0.05 mg/mL of Olmesartan Medoxomil from the *Sample stock solution* and 0.025 mg/mL of *p*-hydroxybenzoic acid isobutyl ester from the *Internal standard solution* in *Diluent 2*

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC

Detector: UV 250 nm

Column: 4.6-mm × 15-cm; 5-μm packing L1

Column temperature: 40°

Flow rate: 1 mL/min

Injection size: 10 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 4 between olmesartan medoxomil and *p*-hydroxybenzoic acid isobutyl ester

Relative standard deviation: NMT 0.5% for the peak ratio of olmesartan medoxomil and the internal standard

Analysis

Samples: Standard solution and Sample solution
Calculate the percentage of olmesartan medoxomil in the portion taken:

$$\text{Result} = (R_U/R_S) \times (C_S/C_U) \times 100$$

R_U = ratio of the peak areas of olmesartan medoxomil and *p*-hydroxybenzoic acid isobutyl ester from the Sample solution
 R_S = ratio of the peak areas of olmesartan medoxomil and *p*-hydroxybenzoic acid isobutyl ester from the Standard solution
 C_S = concentration of USP Olmesartan Medoxomil RS in the Standard solution (mg/mL)
 C_U = concentration of Olmesartan Medoxomil in the Sample solution (mg/mL)

Acceptance criteria: 98.5%–101.5% on the anhydrous and solvent-free basis

IMPURITIES

Inorganic Impurities

- **RESIDUE ON IGNITION** (281): NMT 0.1%. [NOTE—The ignition temperature range is 450° to 550°.]

- **HEAVY METALS, Method II** (231): NMT 10 ppm

Organic Impurities

• PROCEDURE

Buffer: Prepare as directed in the Assay.

Solution A: Acetonitrile and Buffer (1:4)

Solution B: Acetonitrile and Buffer (4:1)

Mobile phase: See the gradient table below.

Time (min)	Solution A (%)	Solution B (%)
0	75	25
10	75	25
35	0	100
45	0	100

System suitability solution: 0.01 mg/mL each of USP Olmesartan Medoxomil RS and USP Olmesartan Medoxomil Related Compound A RS in acetonitrile

Standard solution: 0.01 mg/mL of USP Olmesartan Medoxomil RS in acetonitrile

Sample solution: 1 mg/mL of Olmesartan Medoxomil in acetonitrile

Chromatographic system

(See Chromatography (621), System Suitability.)
[NOTE—A guard column of 4.6-mm × 5-cm of packing L7 may be used.]

Mode: LC

Detector: UV 250 nm

Column: 4.6-mm × 10-cm; 3.5-μm packing L7

Column temperature: 40°

Flow rate: 1 mL/min

Injection size: 10 μL

System suitability

Suitability requirements

Sample: System suitability solution

Resolution: NLT 5 between olmesartan medoxomil and olmesartan medoxomil related compound A

Relative standard deviation: NMT 2.0% for the olmesartan medoxomil peak

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Olmesartan Medoxomil taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each impurity from the Sample solution
 r_S = peak response of olmesartan medoxomil from the Standard solution
 C_S = concentration of USP Olmesartan Medoxomil RS in the Standard solution (mg/mL)
 C_U = concentration of Olmesartan Medoxomil in the Sample solution (mg/mL)
 F = relative response factor (see the Impurity Table)

Acceptance criteria

Individual impurities: See the Impurity Table.

Total impurities: NMT 1.3%. [NOTE—Disregard any peak below 0.05%.]

Impurity Table

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Olmesartan ^a	0.2	1.0	0.5
Olmesartan medoxomil related compound A ^b	0.7	1.6	0.1
Olmesartan medoxomil	1.0	1.0	—
Olefinic impurity ^c	1.6	1.0	0.6
N-alkyl impurity ^d	3.4	0.7	0.1
Any other individual unidentified impurity	—	1.0	0.1

^a 1-[(2'-(1*H*-Tetrazol-5-yl)biphenyl-4-yl)methyl]-4-(2-hydroxypropan-2-yl)-2-propyl-1*H*-imidazole-5-carboxylic acid.

^b 1-[(2'-(1*H*-Tetrazol-5-yl)biphenyl-4-yl)methyl]-4,4-dimethyl-2-propyl-1*H*-furo[3,4-d]imidazol-6(4*H*)-one.

^c (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl 1-((2'-(1*H*-tetrazol-5-yl)biphenyl-4-yl)methyl)-4-(prop-1-en-2-yl)-2-propyl-1*H*-imidazole-5-carboxylate.

^d ((5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1*H*-trityl-1*H*-tetrazol-5-yl)biphenyl-4-yl)methyl)-1*H*-imidazole-5-carboxylate.

SPECIFIC TESTS

• LIMIT OF ACETONE (IF PRESENT)

Internal standard solution: 1% solution of 1-butanol in dimethyl sulfoxide. [NOTE—This solution is stable for 1 month at room temperature.]

Standard solution: 0.37 μL/mL of acetone and 2 μL/mL of 1-butanol from the Internal standard solution in dimethylsulfoxide. [NOTE—This solution is stable for 8 h at room temperature.]

Sample solution: 25 mg/mL of Olmesartan Medoxomil and 2 μL/mL of 1-butanol from the Internal standard solution in dimethylsulfoxide. [NOTE—This solution is stable for 8 h at room temperature.]

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization

Column: 30-m × 0.53-mm column bonded with a 1-μm film of phase G14

Column temperature: See the temperature program table below.

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
50	0	50	5
50	10	180	5

Injection port temperature: 200°**Detector temperature:** 200°**Autosampler temperature:** 80°**Carrier gas:** Helium**Flow rate:** 4 mL/min. [NOTE—Adjust the flow rate so that the retention time of acetone is 2.5 min.]**Injection size:** 1 mL**Split ratio:** 5:1**System suitability****Sample:** *Standard solution*. [NOTE—Allow the samples to stand for 30 min in the autosampler at 80°.]**Suitability requirements****Resolution:** NLT 60 between the acetone and 1-butanol peaks**Relative standard deviation:** NMT 5.0% for the peak area ratio of acetone and 1-butanol**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of acetone in the portion of Olmesartan Medoxomil taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of acetone from the *Sample solution*
 r_s = peak response of acetone from the *Standard solution*

C_s = concentration of acetone in the *Standard solution* (mg/mL)
 C_u = concentration of Olmesartan Medoxomil in the *Sample solution* (mg/mL)

Acceptance criteria: NMT 0.6%

- **WATER DETERMINATION, Method Ic (921):** NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers, protect from moisture, and store below 25°.
- **USP REFERENCE STANDARDS (11)**
 USP Olmesartan Medoxomil RS
 USP Olmesartan Medoxomil Related Compound A RS
 1-[(2'-(1*H*-Tetrazol-5-yl)biphenyl-4-yl)methyl]-4,4-dimethyl-2-propyl-1*H*-furo[3,4-*d*]imidazol-6(4*H*)-one.
 $C_{24}H_{24}N_6O_2 \cdot 428.49$ ■25 (USP35)

Olopatadine Hydrochloride Ophthalmic Solution

DEFINITION

Olopatadine Hydrochloride Ophthalmic Solution is a sterile aqueous solution of Olopatadine Hydrochloride. It contains NLT 90.0% and NMT 110.0% of the labeled amount of olopatadine ($C_{21}H_{23}NO_3$). It may contain suitable antimicrobial agents.

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

- **PROCEDURE**

[NOTE—Protect solutions from light.]

Buffer: Dissolve 13.6 g of monobasic potassium phosphate in 1 L of water, add 1 mL of triethylamine, and mix. Adjust with phosphoric acid to a pH of 3.0.

Mobile phase: Acetonitrile and *Buffer* (28:72)

Standard solution: 0.1 mg/mL of USP Olopatadine Hydrochloride RS in *Mobile phase*

Sample solution: Equivalent to 0.1 mg/mL of olopatadine in *Mobile phase*, from Ophthalmic Solution

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)**Mode:** LC**Detector:** UV 299 nm**Column:** 4.6-mm × 15-cm; 5-μm packing L7**Flow rate:** 1 mL/min**Injection volume:** 30 μL**System suitability****Sample:** *Standard solution***Suitability requirements****Column efficiency:** NLT 2000 theoretical plates**Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of olopatadine ($C_{21}H_{23}NO_3$) in the portion of Ophthalmic Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of the *Sample solution*
 r_s = peak response of the *Standard solution*

C_s = concentration of USP Olopatadine Hydrochloride RS in the *Standard solution* (mg/mL)

C_u = nominal concentration of olopatadine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of olopatadine, 337.41
 M_{r2} = molecular weight of olopatadine hydrochloride, 373.87

Acceptance criteria: 90.0%–110.0%**IMPURITIES**

- **LIMIT OF EARLY ELUTING IMPURITIES**

[NOTE—Protect solutions from light.]

Mobile phase: Proceed as directed in the *Assay*.**Blank solution:** *Mobile phase*

System suitability solution: 0.2 mg/mL of USP Olopatadine Hydrochloride RS and 0.02 mg/mL of USP Olopatadine Related Compound B RS in *Mobile phase*

Standard solution: 0.2 mg/mL of USP Olopatadine Hydrochloride RS in *Mobile phase*

Sample solution: Equivalent to 0.2 mg/mL of olopatadine in *Mobile phase*, from Ophthalmic Solution

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)**Mode:** LC**Detector:** UV 299 nm**Column:** 4.6-mm × 15-cm; 5-μm packing L7**Flow rate:** 1 mL/min**Injection volume:** 30 μL**Run time:** At least 1.6 times the retention time of the major peak**System suitability****Samples:** *System suitability solution* and *Standard solution***Suitability requirements****Resolution:** NLT 2.0 between olopatadine and olopatadine related compound B, *System suitability solution***Column efficiency:** NLT 2000 theoretical plates, *Standard solution***Tailing factor:** NMT 2.0, *Standard solution***Relative standard deviation:** NMT 2.0%, *Standard solution***Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Ophthalmic Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

r_u = peak response of each impurity from the *Sample solution*
 r_s = peak response of olopatadine from the *Standard solution*