

Mobile phase: See *Table 1*.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	75	25
25	10	90
35	10	90
45	75	25
50	75	25

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 220 nm

Column: 4.0-mm \times 25-cm; packing L1

Flow rate: 1 mL/min

Injection volume: 10 μ L

System suitability

Sample: *System suitability solution*

[NOTE—The relative retention times for losartan and triphenylmethanol are 1.0 and 1.9, respectively. The typical retention time for triphenylmethanol is 20 min.]

Suitability requirements

Tailing factor: NMT 1.6

Analysis

Sample: *Sample solution*

Calculate the percentage of each impurity in the portion of losartan potassium ($C_{22}H_{22}ClKN_6O$) taken:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = peak response for each impurity

r_T = sum of the responses for all peaks

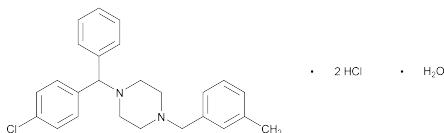
Acceptance criteria

Individual impurities: NMT 0.2%

Total impurities: NMT 0.5%

SPECIFIC TESTS

Change to read:


- **WATER DETERMINATION, Method I** (921): NMT 0.5%. • If labeled as an amorphous form, NMT 5.0%. • (RB 1-Jan-2012)

ADDITIONAL REQUIREMENTS

Add the following:

- **LABELING:** Where it is an amorphous form, the label so indicates. • (RB 1-Jan-2012)
- **PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at controlled room temperature.
- **USP REFERENCE STANDARDS** (11)
USP Losartan Potassium RS

Meclizine Hydrochloride

$C_{25}H_{27}ClN_2 \cdot 2HCl \cdot H_2O$

481.88

$C_{25}H_{27}ClN_2 \cdot 2HCl$

463.88

Piperazine, 1-[(4-chlorophenyl)phenylmethyl]-4-[(3-methylphenyl)methyl]-, dihydrochloride, monohydrate; 1-(*p*-Chloro- α -phenylbenzyl)-4-(*m*-methylbenzyl)piperazine dihydrochloride monohydrate [31884-77-2]. Anhydrous [1104-22-9].

DEFINITION

Change to read:

Meclizine Hydrochloride contains NLT 97.0% and **NMT 102.0%**_{2S (USP35)} of $C_{25}H_{27}ClN_2 \cdot 2HCl$, calculated on the anhydrous basis.

IDENTIFICATION

- **A. INFRARED ABSORPTION** (197K)

Delete the following:

- **B. ULTRAVIOLET ABSORPTION** (197U)

Sample solution: 10 μ g/mL in dilute hydrochloric acid (1 in 100)

Acceptance criteria: Meets the requirements_{2S (USP35)}

Change to read:

- **B. IDENTIFICATION TESTS—GENERAL, Chloride** (191)

Sample solution: Dissolve 25 mg in a mixture of 3 mL of 2 N nitric acid and 5 mL of alcohol.

Acceptance criteria: Meets the requirements

ASSAY

Change to read:

PROCEDURE

Mobile phase: Dissolve 1.5 g of sodium 1-heptanesulfonate in 300 mL of water, and mix this solution with 700 mL of acetonitrile. Adjust with 0.1 N sulfuric acid to a pH of 4.

Standard solution: 0.1 mg/mL of USP Meclizine Hydrochloride RS in *Mobile phase*

Sample solution: 0.1 mg/mL of Meclizine Hydrochloride in *Mobile phase*

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1.3 mL/min

Injection size: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of meclizine hydrochloride ($C_{25}H_{27}ClN_2 \cdot 2HCl$) in the portion of Meclizine Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of meclizine from the *Sample solution*

r_S = peak response of meclizine from the *Standard solution*

C_S = concentration of USP Meclizine Hydrochloride RS in the *Standard solution* (mg/mL)

C_U = concentration of Meclizine Hydrochloride in the *Sample solution* (mg/mL)_{2S (USP35)}

Acceptance criteria: 97.0%–**NMT 102.0%**_{2S (USP35)} on the anhydrous basis

IMPURITIES

- **RESIDUE ON IGNITION (281):** NMT 0.1%

Change to read:**• ORGANIC IMPURITIES, ■PROCEDURE 1**

[NOTE—On the basis of the synthetic route, perform either *Procedure 1* or *Procedure 2*. *Procedure 2* is recommended when the isomeclizine impurity may be present.]^{25 (USP35)}

Mobile phase: Dissolve 1.5 g of sodium 1-heptanesulfonate in 300 mL of water, and mix this solution with 700 mL of acetonitrile. Adjust with 0.1 N sulfuric acid to a pH of 4.

System suitability solution: 0.01 mg/mL each of USP Meclizine Hydrochloride RS and 4-chlorobenzophenone in *Mobile phase*

Standard solution: 2.5 µg/mL of USP Meclizine Hydrochloride RS in *Mobile phase*

Sample solution: 0.5 mg/mL of Meclizine Hydrochloride in *Mobile phase*

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 2.0 mL/min

Injection size: 30 µL

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The elution order is meclizine, followed by 4-chlorobenzophenone.]

Suitability requirements

Resolution: NLT 2.0 between meclizine hydrochloride and 4-chlorobenzophenone, *System suitability solution*

Column efficiency: NLT 1800 theoretical plates, determined from the analyte peak, *Standard solution*

Tailing factor: NMT 1.5 for the analyte peak, *Standard solution*

Relative standard deviation: NMT 1.5%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Allow the *Sample solution* to elute for NLT three times the retention time of meclizine hydrochloride.

Calculate the percentage of each impurity in the portion of Meclizine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of meclizine from the *Standard solution*

C_s = concentration of USP Meclizine Hydrochloride RS in the *Standard solution* (mg/mL)

C_u = concentration of Meclizine Hydrochloride in the *Sample solution* (mg/mL)

F = relative response factor, 0.72 for the 4-chlorobenzophenone peak and 1.0 for all other peaks

Acceptance criteria

Any individual impurity: NMT 0.5%

Total impurities: NMT 1.0%

Add the following:**■ ORGANIC IMPURITIES, PROCEDURE 2**

Mobile phase: Dissolve 5 g of sodium 1-heptanesulfonate in 1000 mL of water, and mix 600 mL of this solution with 400 mL of acetonitrile. Adjust with 0.1 N sulfuric acid to a pH of 4.0 ± 0.1 .

System suitability solution: 2.5 µg/mL each of USP Meclizine Hydrochloride RS, USP Meclizine Related Compound A RS, and USP Meclizine Related Compound B RS in *Mobile phase*

Standard solution: 2.5 µg/mL of USP Meclizine Hydrochloride RS in *Mobile phase*

Sample solution: 0.5 mg/mL of Meclizine Hydrochloride in *Mobile phase*. [NOTE—Store this solution no longer than 24 h.]

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 50°

Flow rate: 2.0 mL/min

Injection size: 30 µL

System suitability

Samples: *System suitability solution* and *Standard solution*

Suitability requirements

Resolution: NLT 2.0 between meclizine related compound B and meclizine, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 6.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Meclizine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of meclizine from the *Standard solution*

C_s = concentration of USP Meclizine Hydrochloride RS in the *Standard solution* (mg/mL)

C_u = concentration of Meclizine Hydrochloride in the *Sample solution* (mg/mL)

F = relative response factor (see *Table 1*)

Acceptance criteria: See *Table 1*. Disregard any peak eluting before 1.75 min.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
3-Methylbenzyl alcohol	0.11	1.0	0.10
1,4-Bis(3-methylbenzyl) piperazine	0.22	0.73	0.10
4-Chlorobenzhydrol ^a	0.53	1.3	0.15
Meclizine o-chloro isomer ^b	0.81	1.0	0.10
Isomeclizine (meclizine o-methyl isomer) ^c	0.90	1.1	0.15
Meclizine	1.0	—	—
Any individual unspecified impurity	—	1.0	0.10
Total impurities	—	—	1.0

^a USP Meclizine Related Compound A.

^b 1-[2-Chlorophenyl](phenyl)methyl]-4-(3-methylbenzyl) piperazine.

^c USP Meclizine Related Compound B.

SPECIFIC TESTS

- **WATER DETERMINATION, Method I (921):** NMT 5.0%

ADDITIONAL REQUIREMENTS**Change to read:**

- **PACKAGING AND STORAGE:** Preserve in tight containers.
■ Store at room temperature. ■_{2S} (USP35)

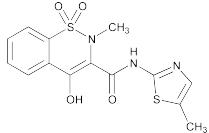
Add the following:

- **LABELING:** If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states the test with which the article complies. ■_{2S} (USP35)

Change to read:**• USP REFERENCE STANDARDS (11)**

USP Meclizine Hydrochloride RS

■ USP Meclizine Related Compound A RS


4-Chlorobenzhydrol.

 $C_{13}H_{11}ClO$ 218.68

USP Meclizine Related Compound B RS

Isomeclizine

1-[(4-Chlorophenyl)(phenyl)methyl]-4-(2-methylbenzyl)piperazine dihydrochloride monohydrate.

 $C_{25}H_{27}ClN_2 \cdot 2HCl \cdot H_2O$ 481.88 ■_{2S} (USP35)**Meloxicam** $C_{14}H_{13}N_3O_4S_2$

351.40

4-Hydroxy-
y-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1,2-benzothiazine-
-3-carboxamide 1,1-dioxide [71125-38-7].**DEFINITION**Meloxicam contains NLT 99.0% and NMT 100.5% of meloxicam ($C_{14}H_{13}N_3O_4S_2$), calculated on the dried basis.**IDENTIFICATION****• A. INFRARED ABSORPTION (197K)****• B. ULTRAVIOLET ABSORPTION (197U)**

Wavelength range: 240–450 nm

Sample solution: 10 µg/mL in methanol

ASSAY**• PROCEDURE****Solution A:** Mixture of a 0.1% (w/v) solution of ammonium acetate adjusted with 10% ammonia solution to a pH of 9.1**Mobile phase:** Methanol and *Solution A* (21:29)**Diluent:** Methanol and 1 N sodium hydroxide (250:1)**System suitability solution:** 0.08 mg/mL each of USP Meloxicam RS and USP Meloxicam Related Compound A RS. Prepared by dissolving in 50% of the flask volume of *Diluent* and diluting with water to volume.**Standard solution:** 0.2 mg/mL of USP Meloxicam RS. Prepared by dissolving in 50% of the flask volume of *Diluent* and diluting with water to volume.**Sample solution:** 0.2 mg/mL of Meloxicam. Prepared by dissolving in 50% of the flask volume of *Diluent* and diluting with water to volume.**Chromatographic system**(See *Chromatography (621)*, *System Suitability*.)**Mode:** LC**Detector:** UV 360 nm**Column:** 4.6-mm × 15-cm; packing L1**Column temperature:** 45°**Flow rate:** 1 mL/min**Injection volume:** 10 µL**System suitability****Sample:** *System suitability solution*

[NOTE—The relative retention times for meloxicam related compound A and meloxicam are 0.7 and 1.0, respectively.]

Suitability requirements**Resolution:** NLT 3.0 between meloxicam related compound A and meloxicam**Tailing factor:** NMT 2.0 for the meloxicam peak**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of meloxicam ($C_{14}H_{13}N_3O_4S_2$) in the portion of Meloxicam taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of meloxicam from the *Sample solution* r_S = peak response of meloxicam from the *Standard solution* C_S = concentration of USP Meloxicam RS in the *Standard solution* (mg/mL) C_U = concentration of the *Sample solution* (mg/mL)**Acceptance criteria:** 99.0%–100.5% on the dried basis**IMPURITIES****• RESIDUE ON IGNITION (281):** NMT 0.1%**• HEAVY METALS, Method II (231):** NMT 10 ppm**• ORGANIC IMPURITIES, PROCEDURE 1**Perform either *Procedure 1* or *Procedure 2*, depending on the manufacturing process used.**Solution A:** 0.1% (w/v) solution of monobasic potassium phosphate adjusted with 1 N sodium hydroxide to a pH of 6.0**Solution B:** Methanol**Diluent:** Methanol and 1 N sodium hydroxide (50:3)**Mobile phase:** See *Table 1*.**Table 1**

Time (min)	Solution A (%)	Solution B (%)
0	60	40
2	60	40
10	30	70
15	30	70
15.1	60	40
18	60	40

System suitability solution: 0.08 mg/mL each of USP Meloxicam RS, USP Meloxicam Related Compound A RS, and USP Meloxicam Related Compound B RS. Prepared by dissolving in 10% of the flask volume of *Diluent* and diluting with water to volume.**Standard stock solution:** 0.6 mg/mL of USP Meloxicam RS. Prepared by dissolving in 25% of the flask volume of *Diluent* and diluting with methanol to volume.**Standard solution:** 0.012 mg/mL of USP Meloxicam RS in methanol from the *Standard stock solution***Sample solution:** 4 mg/mL of Meloxicam. Prepared by dissolving in 25% of the flask volume of *Diluent* and diluting with methanol to volume.**Chromatographic system**(See *Chromatography (621)*, *System Suitability*.)