

Signal-to-noise ratio: NLT 3, *Sensitivity solution*
Analysis**Sample:** *Sample solution*

Calculate the percentage of duloxetine related compound A in the portion of Duloxetine Hydrochloride taken:

$$\text{Result} = (r_u/r_t) \times 100$$

r_u = peak response for duloxetine related compound A from the *Sample solution*
 r_t = sum of the responses of duloxetine and duloxetine related compound A peaks from the *Sample solution*

Acceptance criteria: NMT 0.5%

SPECIFIC TESTS

- **Loss On Drying** (731): Dry at 105° for 3 h: it loses NMT 0.5% of its weight.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Protect from light. Store at room temperature.
- **USP REFERENCE STANDARDS** (11):
USP Duloxetine Hydrochloride RS
USP Duloxetine Related Compound A RS
(*R*)-*N*-Methyl-3-(naphthalen-1-ylxy)-3-(thiophen-2-yl)propan-1-amine hydrochloride.
 $C_{18}H_{19}NOS \cdot HCl$ 333.88 ■2S (USP3.5)

Add the following:

Duloxetine Delayed-Release Capsules

DEFINITION

Duloxetine Delayed-Release Capsules contain an amount of Duloxetine Hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of duloxetine ($C_{18}H_{19}NOS$).

IDENTIFICATION

- **A. INFRARED ABSORPTION** (197S):
Spectral range: 1650 cm^{-1} to 900 cm^{-1}
Standard: 1 mg/mL of USP Duloxetine Hydrochloride RS in methylene chloride. Shake the contents, and sonicate for 1 min. Transfer 15 mL of filtrate into a separatory funnel, and add 15 mL of pH 7.5 phosphate buffer. Collect the organic layer, and evaporate to dryness. Redisolve the residue with a few drops of methylene chloride, and transfer to a KBr or NaCl plate. Allow it to dry.
Sample: 1 mg/mL of duloxetine, from the contents of NLT 10 Capsules in methylene chloride. Proceed as directed for the Standard.
- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY**• PROCEDURE**

Protect solutions of duloxetine from light.

Buffer A: 3.4 g/L of monobasic potassium phosphate in water. To 1 L of this solution add 15 mL of triethylamine, and adjust with phosphoric acid to a pH of 5.5.

Buffer B: 0.2 g/L of monobasic ammonium phosphate and 4.5 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 8.0.

Mobile phase: Methanol, tetrahydrofuran, and *Buffer A* (323:90:587)

Diluent: Methanol and *Buffer B* (50:50)

System suitability solution: 0.1 mg/mL USP Duloxetine Hydrochloride RS, 0.05 mg/mL of 1-naphthol, 0.01

mg/mL of USP Duloxetine Related Compound F RS, and 0.025 mg/mL of USP Duloxetine Related Compound H RS, in *Diluent*. [NOTE—Add 1 mL of methanol before diluting to volume to assist with dissolving contents. Duloxetine related compound H is used for peak identification purposes in this solution.]

Standard solution: 0.1 mg/mL of USP Duloxetine Hydrochloride RS in *Diluent*

Sample solution: Nominally 0.1 mg/mL of duloxetine from the contents of NLT 5 Capsules, in *Diluent*

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

[NOTE—It is recommended to preheat the *Mobile phase* to 45°.]

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 7.5-cm; 3- or 3.5- μm packing L7

Column temperature: 45°

Flow rate: 1.5 mL/min

Injection size: 10 μL

Run time: 6 times the retention time of duloxetine

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—See *Table 1* under *Organic Impurities* for relative retention times.]

Suitability requirements

Resolution: NLT 1.6 between duloxetine and duloxetine related compound F; NLT 2 between 1-naphthol and duloxetine related compound H, *System suitability solution*

Relative standard deviation: NMT 1.5%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of duloxetine ($C_{18}H_{19}NOS$) in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of USP Duloxetine Hydrochloride RS in the *Standard solution* (mg/mL)

C_u = nominal concentration of duloxetine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of duloxetine free base, 297.42

M_{r2} = molecular weight of duloxetine hydrochloride, 333.88

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS**• DISSOLUTION** (711)

Acid stage medium: 0.1 N hydrochloric acid; 1000 mL

Time: 2 h

Buffer stage medium: pH 6.8 phosphate buffer; 1000 mL

Time: 60 min for Capsules containing 20% w/w pellets; 90 min for Capsules containing 32% w/w pellets

Apparatus 1: 100 rpm

Buffer A and Mobile phase: Proceed as directed in the Assay.

Standard stock solution: 0.28 mg/mL of USP Duloxetine Hydrochloride RS in *Buffer stage medium*. Use a small amount of methanol, not exceeding 2% of the final volume, to dissolve duloxetine.

Acid stage standard solution: 2.3 $\mu\text{g}/\text{mL}$ of duloxetine hydrochloride, from the *Standard stock solution* diluted with *Buffer stage medium*

Buffer stage standard solution: 23 $\mu\text{g}/\text{mL}$ of duloxetine hydrochloride, from the *Standard stock solution* diluted with *Buffer stage medium*

Sample solution: After 2 h in the *Acid stage medium*, pass a portion of the solution under test through a suitable filter. Transfer the basket containing the pellets to the vessel containing the *Buffer stage medium*. After the appropriate time in the *Buffer stage medium*, pass a portion of the solution under test through a suitable filter.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 7.5-cm; 3-μm packing L7

Column temperature: 45°

Flow rate: 1.5 mL/min

Injection size: 10 μL

System suitability

Sample: *Acid stage standard solution*

Suitability requirements

Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Acid stage standard solution*, *Buffer stage standard solution*, and *Sample solution*

Calculate the percentage of duloxetine released in the *Acid stage medium* (P_A):

$$P_A =$$

$$\{(r_u/r_s) + [(r_{2u}/r_s) \times 1/F]\} \times C_s/L \times V \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of duloxetine from the *Sample solution*

r_s = peak response of duloxetine from the *Acid stage standard solution*

r_{2u} = peak response for 1-naphthol from the *Sample solution*

F = relative response factor for 1-naphthol, 0.49

C_s = concentration of duloxetine hydrochloride in the *Acid stage standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of *Medium*, 1000 mL

M_{r1} = molecular weight of duloxetine free base, 297.42

M_{r2} = molecular weight of duloxetine hydrochloride, 333.88

Calculate the percentage of duloxetine released in the *Buffer stage medium*:

$$\text{Result} = [(r_u/r_s) \times C_s/L \times V \times (M_{r1}/M_{r2}) \times 100] + P_A$$

r_u = peak response of duloxetine from the *Sample solution*

r_s = peak response of duloxetine from the *Buffer stage standard solution*

C_s = concentration of duloxetine hydrochloride in the *Buffer stage standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of *Medium*, 1000 mL

M_{r1} = molecular weight of duloxetine free base, 297.42

M_{r2} = molecular weight of duloxetine hydrochloride, 333.88

P_A = percentage of duloxetine released in the *Acid stage medium*

Tolerances

Acid stage: No individual unit releases more than 10% of the labeled amount of duloxetine in 2 h.

Buffer stage

For Capsules containing 20% w/w pellets: NLT 75% (Q) of the labeled amount of duloxetine is dissolved in 60 min.

For Capsules labeled to contain 32% w/w pellets:

NLT 75% (Q) of the labeled amount of duloxetine is dissolved in 90 min.

- UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

IMPURITIES

• ORGANIC IMPURITIES

Protect solutions of duloxetine from light.

Buffer A, Buffer B, Mobile phase, Diluent, System suitability solution, Standard solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the *Assay*.

Analysis

Sample: *Sample solution*

Calculate the percentage of each impurity in the portion of Capsules taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = peak response of each impurity from *Sample solution*

r_T = sum of the responses of all the peaks from *Sample solution*

Acceptance criteria: See *Table 1*.

Table 1

Name	Relative Retention Time	Acceptance Criteria NMT (%)
Duloxetine	1.0	—
Duloxetine related compound F ^{a,d}	1.1	—
1-Naphthol ^{b,d}	1.5	—
Duloxetine related compound H ^c	2.2	0.2
Any individual unspecified degradation product	—	0.2
Total impurities	—	0.4

^a(S)-N-Methyl-3-(naphthalen-1-yloxy)-3-(thiophen-3-yl)propan-1-amine hydrochloride.

^bNaphthalen-1-ol.

^c(S)-4-(Methyl[3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl]amino)-4-oxobutanoic acid.

^dFor system suitability purposes only.

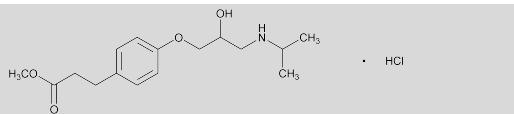
ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature.

- USP REFERENCE STANDARDS** (11):

USP Duloxetine Hydrochloride RS

USP Duloxetine Related Compound F RS


(S)-N-Methyl-3-(naphthalen-1-yloxy)-3-(thiophen-3-yl)propan-1-amine hydrochloride.

$C_{18}H_{19}NOS \cdot HCl$ 333.88

USP Duloxetine Related Compound H RS

(S)-4-(Methyl[3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl]amino)-4-oxobutanoic acid.

$C_{22}H_{23}NO_4S$ 397.49 ■2S (USP35)

Add the following:**Esmolol Hydrochloride**

$C_{16}H_{25}NO_4 \cdot HCl$ 331.83

Benzenepropanoic acid, 4-[2-hydroxy-3-[(1-methylethyl)amino]propoxy]-, methyl ester, hydrochloride, (\pm);
 (\pm) -Methyl p-[2-hydroxy-3-(isopropylamino)propoxy] hydrocinnamate hydrochloride [81161-17-3].

DEFINITION

Esmolol Hydrochloride contains NLT 98.0% and NMT 102.0% of $C_{16}H_{25}NO_4 \cdot HCl$, calculated on the anhydrous basis.

IDENTIFICATION

- A. INFRARED ABSORPTION (197K)**
- B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY**• PROCEDURE**

Buffer: Dissolve 3.0 g of potassium dihydrogen phosphate in 650 mL of water.

Mobile phase: Acetonitrile, methanol, and *Buffer* (15:20:65)

System suitability stock solution: 1 mg/mL of esmolol hydrochloride prepared as follows. Transfer a suitable quantity of USP Esmolol Hydrochloride RS to a suitable volumetric flask, and dissolve in and dilute with 1 N hydrochloric acid to volume. Allow the contents to stand for at least 30 min. [NOTE—This results in the partial degradation of the esmolol resulting in the production of esmolol free acid (see *System suitability* for relative retention time).]

System suitability solution: 0.2 mg/mL in water from *System suitability stock solution*

Standard solution: 200 μ g/mL of USP Esmolol Hydrochloride RS in water

Sample solution: 200 μ g/mL of Esmolol Hydrochloride in water

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC

Detector: UV 222 nm

Column: 3.9-mm \times 30-cm; 10- μ m; L1 packing

Flow rate: 2 mL/min

Injection size: 20 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for esmolol free acid and esmolol are 0.41 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 4.0 between esmolol free acid and esmolol, *System suitability solution*

Tailing factor: NMT 2.0 for the esmolol peak, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of esmolol hydrochloride ($C_{16}H_{25}NO_4 \cdot HCl$) in the portion of the sample taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of esmolol from the *Sample solution*
 r_s = peak response of esmolol from the *Standard solution*
 C_s = concentration of USP Esmolol Hydrochloride RS in the *Standard solution* (mg/mL)
 C_u = concentration of Esmolol Hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES**• HEAVY METALS (231)**

Standard solution: Into a 50-mL color-comparison tube pipet 2 mL of *Standard Lead Solution* (20 μ g of Pb), and dilute with water to 25 mL. Using a pH meter or short-range pH indicator paper as external indicator, adjust with 1 N acetic acid to a pH between 3.0 and 4.0, dilute with water to 40 mL, and mix.

Sample solution: Into a 50-mL color-comparison tube dissolve 1 g of the sample in water, and dilute with water to 25 mL. Using a pH meter or short-range pH indicator paper as external indicator, adjust with 1 N acetic acid to a pH between 3.0 and 4.0, dilute with water to 40 mL, and mix.

Analysis

Samples: *Standard solution* and *Sample solution*
 To each of the tubes add 10 mL of hydrogen sulfide TS, and mix. Allow to stand for 2 min. View downward into the tube over a white background.

Acceptance criteria: The color of the *Sample solution* is not darker than the color of the *Standard solution* (NMT 20 ppm).

• RESIDUE ON IGNITION (281): NMT 0.1%**• ORGANIC IMPURITIES**

Buffer and System suitability solution: Prepare as directed in the *Assay*.

Solution A: Methanol

Solution B: Prepare as directed for *Mobile phase* in the *Assay*.

Mobile phase: See *Table 1*.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	0	100
20	0	100
25	25	75
35	25	75
36	0	100
40	0	100

Sample solution: 1 mg/mL of Esmolol Hydrochloride in water

Chromatographic system: Prepare as directed in the *Assay*.

Column temperature: 30°

System suitability

Sample: *System suitability solution*

Suitability requirements

Resolution: NLT 4.0 between esmolol free acid and esmolol

Tailing factor: NMT 2.0 for the esmolol peak

Analysis

Sample: *Sample solution*

Calculate the percentage of each individual impurity in the portion of Esmolol Hydrochloride taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = peak response of each individual impurity from the *Sample solution*