

ASSAY**Change to read:****• PROCEDURE**

Diluent: Acetonitrile and water (45:55)
Buffer: 1.4 g/L monobasic potassium phosphate in water
Mobile phase: Acetonitrile and Buffer (45:55)
System suitability solution: 0.02 mg/mL each of USP Triazolam RS and USP Alprazolam Related Compound A RS in *Diluent*
Standard solution: 0.025 mg/mL of USP Triazolam RS in *Diluent*
Sample solution: 0.025 mg/mL of Triazolam in *Diluent*
Chromatographic system
 (See *Chromatography* (621), *System Suitability*.)
Mode: LC
Detector: UV 215 nm
Column: 4.6-mm × 15-cm; 3.5-μm packing L1
Column temperature: 40°
Flow rate: 1 mL/min
Injection size: 10 μL
Run time: 3 times the retention time of triazolam
System suitability
Samples: *System suitability solution* and *Standard solution*
 [NOTE—The relative retention times for alprazolam related compound A and triazolam are 0.77 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 4.0 between alprazolam related compound A and triazolam, *System suitability solution*
Tailing: NMT 1.5, *Standard solution*
Relative standard deviation: NMT 1.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*
 Calculate the percentage of triazolam ($C_{17}H_{11}Cl_2N_4$) in the portion of Triazolam taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of triazolam from the *Sample solution*
 r_s = peak response of triazolam from the *Standard solution*
 C_s = concentration of USP Triazolam RS in the *Standard solution* (mg/mL)
 C_u = concentration of Triazolam in the *Sample solution* (mg/mL)

Acceptance criteria: 97.0%–103.0% on the dried basis^{1S (USP35)}

IMPURITIES

- RESIDUE ON IGNITION** (281): NMT 0.5%
- HEAVY METALS, Method II** (231): NMT 20 ppm

Change to read:**• ORGANIC IMPURITIES**

Diluent, Buffer, Mobile phase, System suitability solution, and Chromatographic system: Proceed as directed in the *Assay*.
Standard solution: 0.25 μg/mL of USP Triazolam RS in *Diluent*
Sample solution: 0.25 mg/mL of Triazolam in *Diluent*
System suitability
Samples: *System suitability solution* and *Standard solution*
 [NOTE—The relative retention times for alprazolam related compound A and triazolam are 0.77 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 4.0 between alprazolam related compound A and triazolam, *System suitability solution*

Tailing: NMT 1.5, *Standard solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Analysis

Sample: *Sample solution*

Calculate the total percentage of impurities in the portion of Triazolam taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = sum of the areas of each of the minor component peaks detected

r_T = sum of all minor component peak areas and the area of the major component peak

Acceptance criteria

Total impurities: NMT 1.5%^{1S (USP35)}

SPECIFIC TESTS

- LOSS ON DRYING** (731): Dry a sample at 60° and at a pressure not exceeding 5 mm of mercury for 16 h: it loses NMT 0.5% of its weight.

ADDITIONAL REQUIREMENTS**Change to read:**

- PACKAGING AND STORAGE:** Preserve in well-closed containers at room temperature.^{1S (USP35)}

Change to read:**• USP REFERENCE STANDARDS (11)**

USP Triazolam RS

■USP Alprazolam Related Compound A RS
 2-(2-Acetylhydrazino)-7-chloro-5-phenyl-3H-1,4-benzodiazepine.

$C_{17}H_{15}ClN_4O$ 326.78^{1S (USP35)}

Add the following:**■Valsartan Tablets****DEFINITION**

Valsartan Tablets contain NLT 95.0% and NMT 105.0% of the labeled amount of valsartan ($C_{24}H_{29}N_5O_3$).

IDENTIFICATION

- A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY**• PROCEDURE**

Mobile phase: Acetonitrile, water, and glacial acetic acid (50:50:0.1)

Diluent: Acetonitrile and water (1:1)

System suitability solution: 2 μg/mL of USP Valsartan Related Compound B RS and 20 μg/mL of USP Valsartan RS in *Diluent*

Standard solution: 0.20 mg/mL of USP Valsartan RS in *Diluent*

Sample stock solution: Place NLT 20 Tablets in a suitable volumetric flask, and initially add water (10% of the volume of the flask). Stir or shake until the Tablets disintegrate (about 5 min). Add acetonitrile (about 80% of

the volume of the flask). Stir or shake for 30 min, and sonicate for 10 min. Cool, and dilute with acetonitrile to volume, mix, and centrifuge a portion of the suspension.

Sample solution: 0.2 mg/mL of valsartan from the *Sample stock solution* in *Diluent*

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 25-cm; 10-μm packing L1

Column temperature: 30°

Flow rate: 1.0 mL/min

Injection size: 20 μL

System suitability

Sample: *System suitability solution* and *Standard solution*

Suitability requirements

Resolution: NLT 1.5 between valsartan related compound B and valsartan, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of valsartan ($C_{24}H_{29}N_5O_3$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of USP Valsartan RS in the *Standard solution* (mg/mL)

C_u = nominal concentration of valsartan in the *Sample solution* (mg/mL)

Acceptance criteria: 95.0%–105.0%

PERFORMANCE TESTS

• DISSOLUTION (711)

Medium: pH 6.8 phosphate buffer; 1000 mL, degassed

Apparatus 2: 50 rpm

Time: 30 min

Standard solution: ($L/1000$) mg/mL of USP Valsartan RS in *Medium*, where L is the label claim, in mg/Tablet. [NOTE—Dilute with *Medium* as needed.]

Sample solution: Pass a portion of the solution under test through a suitable filter.

Analysis

Analytical wavelength: UV 250 nm

Blank: *Medium*

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of valsartan ($C_{24}H_{29}N_5O_3$) dissolved:

$$\text{Result} = (A_u/A_s) \times (C_s/L) \times V \times 100$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of USP Valsartan RS in the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

V = volume of *Medium*, 1000 mL

Tolerances: NLT 80% (Q) of the labeled amount of valsartan ($C_{24}H_{29}N_5O_3$) is dissolved.

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

• ORGANIC IMPURITIES

Mobile phase, Diluent, System suitability solution, Sample solution, and Chromatographic system: Proceed as directed in the *Assay*.

Standard solution: 0.4 μg/mL of USP Valsartan RS in *Diluent*

Sensitivity solution: 0.1 μg/mL of USP Valsartan RS in *Diluent*, from the *Standard solution*

System suitability

Sample: *Standard solution, Sensitivity solution, and System suitability solution*

Suitability requirements

Resolution: NLT 1.5 between valsartan related compound B and valsartan, *System suitability solution*

Relative standard deviation: NMT 10.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Sample: *Sample solution and Standard solution*

Calculate the percentage of each individual impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of valsartan from the *Standard solution*

C_s = concentration of USP Valsartan RS in the *Standard solution* (μg/mL)

C_u = nominal concentration of valsartan in the *Sample solution* (μg/mL)

Acceptance criteria

Each individual impurity: NMT 0.2%

Total impurities: NMT 0.4%. [NOTE—Calculate the total impurities from the sum of all individual impurity peaks. Disregard any peak due to valsartan related compound B and any peaks ≤0.05%.]

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight containers.

• USP REFERENCE STANDARDS (11)

USP Valsartan RS

USP Valsartan Related Compound B RS

(*S*)-N-Butyryl-N-[(2'-(1-H-tetrazole-5-yl)-biphenyl-4-yl)-methyl]-valine.

$C_{23}H_{27}N_5O_3$ 421.49 ■15 (USP35)

Add the following:

Verapamil Hydrochloride Extended-Release Capsules

DEFINITION

Verapamil Hydrochloride Extended-Release Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of verapamil hydrochloride ($C_{27}H_{38}N_2O_4 \cdot HCl$).

IDENTIFICATION

• A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Solution A: 0.01 N sodium acetate in water containing 33 mL/L of glacial acetic acid

Mobile phase: Acetonitrile, 2-aminoheptane, and *Solution A* (60:1:140)

System suitability solution: 0.12 mg/mL of USP Verapamil Hydrochloride RS and 0.1 mg/mL of USP Verapamil Related Compound B RS in *Mobile phase*

Standard solution: 0.12 mg/mL of USP Verapamil Hydrochloride RS in *Mobile phase*

Sample stock solution: 1.2 mg/mL of verapamil hydrochloride prepared as follows. Transfer an equivalent to 240 mg of verapamil hydrochloride, from the pool of Capsule contents (NLT 20), to a 200-mL volumetric flask.