

Analysis

Samples: Standard solution and Sample solution
Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of each impurity from the Sample solution
 r_S = peak response of zolpidem from the Standard solution
 C_S = concentration of USP Zolpidem Tartrate RS in the Standard solution (mg/mL)
 C_U = concentration of zolpidem tartrate in the Sample solution (mg/mL)

Acceptance criteria

Individual impurities: See Impurity Table 1.

Total impurities: NMT 0.5%

Impurity Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Zolpidem acid ^a	0.23	0.3
Zolpidem related compound B ^b	0.58	0.3
Zolpidem related compound C ^c	0.70	0.3
Zolpidem tartrate	1.0	—
Zolpidem carbaldehyde ^d	1.45	0.3
Any individual unspecified degradation product	—	0.2

^a 2-(6-Methyl-2-*p*-tolylimidazo[1,2-*α*]pyridin-3-yl)acetic acid.

^b *N,N*-Dimethyl-2-(6-methyl-2-*p*-tolylimidazo[1,2-*a*]pyridin-3-yl)-2-oxoacetamide.

^c 4-Methyl-N-(5-methylpyridin-2-yl)benzamide.

^d 6-Methyl-2-*p*-tolylimidazo[1,2-*α*]pyridine-3-carbaldehyde.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in well-closed containers, and store at controlled room temperature.
- USP REFERENCE STANDARDS (11)**
 - USP Zolpidem Impurities Mixture RS
Contains at least 98.5% of zolpidem tartrate; 0.2% of zolpidem tartrate related compound B (*N,N*,6-trimethyl-2-(4-methylphenyl)imidazo[1,2-*a*]pyridine-3-(2-oxoacetamide)); and 0.2% of zolpidem tartrate related compound C (5-methyl-2-(4-methylbenzamido)pyridine).
 - USP Zolpidem Tartrate RS

Zolpidem Tartrate Extended-Release Tablets**DEFINITION**

Zolpidem Tartrate Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$).

IDENTIFICATION

- A. ULTRAVIOLET ABSORPTION (197U)**
Sample: 25 μ g/mL of zolpidem tartrate in 0.01 M hydrochloric acid from a suitable quantity of powder obtained by grinding 1 Tablet
- B.** The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY**PROCEDURE**

Buffer: 3.3 mL of phosphoric acid in 1 L of water. Adjust with triethylamine to a pH of 5.5.

Mobile phase: Acetonitrile, methanol, and Buffer (4:5:11)

Standard stock solution: 0.5 mg/mL of USP Zolpidem Tartrate RS in a mixture of alcohol and 0.01 M hydrochloric acid (4:1)

Standard solution: 0.1 mg/mL of USP Zolpidem Tartrate RS in Mobile phase from the Standard stock solution

Sample stock solution: Finely powder NLT 8 Tablets. Transfer the powder quantitatively to a suitable volumetric flask to obtain 0.5 mg/mL of zolpidem tartrate. Add 70% of the flask volume of a mixture of alcohol and 0.01 M hydrochloric acid (5:2), and stir on a magnetic stirrer for 1 h. Dilute with alcohol to volume. Allow solid particles to settle, and pass the supernatant through a suitable filter (Whatman 40 or equivalent).

Sample solution: 0.1 mg/mL of zolpidem tartrate from filtered Sample stock solution in Mobile phase

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L1

Column temperature: 40°

Flow rate: 1 mL/min

Injection size: 15 μ L

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 3.0 for zolpidem

Relative standard deviation: NMT 2.0% for zolpidem

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the Sample solution

r_S = peak response from the Standard solution

C_S = concentration of USP Zolpidem Tartrate RS in the Standard solution (mg/mL)

C_U = nominal concentration of the Sample solution (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS**Change to read:****DISSOLUTION (711)****Test 1 • (RB 1-Jul-2011)**

Medium: 0.01 N hydrochloric acid; 500 mL

Apparatus 1: 100 rpm

Times: 30, 90, and 240 min

Standard solution: Solution of USP Zolpidem Tartrate RS in Medium containing ($L/500$) mg/mL, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter.

Detector: UV 295 nm

Cell path: 1 cm

Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$) dissolved:

$$\text{Result} = (A_U/A_S) \times (C_S/L) \times V \times 100$$

A_U = absorbance of the Sample solution

A_S = absorbance of the Standard solution

C_S = concentration of the Standard solution (mg/mL)

L = label claim (mg/Tablet)
 V = volume of Medium, 500 mL
 Tolerances: See Table 1.

Table 1

Time (min)	Amount Dissolved
30	50%–70%
90	70%–90%
240	NLT 85%

The percentages of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$) dissolved in the times specified conform to *Acceptance Table 2 in Dissolution* (711).

• **Test 2:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium, Apparatus, and Times: Proceed as directed for *Test 1*.

Standard solution: Solution of USP Zolpidem Tartrate RS in Medium containing $(L/500)$ mg/mL, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter.

Detector: UV 295 nm

Blank: Medium

Analysis

Samples: Standard solution and Sample solution
 Calculate the percentage of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$) dissolved:

$$\text{Result} = (A_u/A_s) \times (C_s/L) \times V \times 100$$

A_u = absorbance of the Sample solution
 A_s = absorbance of the Standard solution
 C_s = concentration of the Standard solution (mg/mL)
 L = label claim (mg/Tablet)
 V = volume of Medium, 500 mL

Tolerances: See Table 2.

Table 2

Time (min)	Amount Dissolved
30	55%–75%
90	70%–90%
240	NLT 85%

The percentages of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$) dissolved in the times specified conform to *Acceptance Table 2 in Dissolution* (711).

• **Test 3:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Medium: 0.01 N hydrochloric acid; 500 mL

Apparatus 1: 100 rpm

Times: 30, 90, and 120 min

Standard solution: Solution of USP Zolpidem Tartrate RS in Medium containing $(L/500)$ mg/mL, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter.

Detector: UV 237 nm

Blank: Medium

Analysis

Samples: Standard solution and Sample solution
 Calculate the percentage of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$) dissolved:

$$\text{Result} = (A_u/A_s) \times (C_s/L) \times V \times 100$$

A_u = absorbance of the Sample solution
 A_s = absorbance of the Standard solution
 C_s = concentration of the Standard solution (mg/mL)
 L = label claim (mg/Tablet)
 V = volume of Medium, 500 mL

Tolerances: See Table 3.

Table 3

Time (min)	Amount Dissolved
30	25%–45%
90	65%–85%
120	NLT 80%

The percentages of the labeled amount of zolpidem tartrate ($C_{42}H_{48}N_6O_8$) dissolved in the times specified conform to *Acceptance Table 2 in Dissolution* (711).• (RB 1-Jul-2011)

• **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Buffer, Mobile phase, Standard stock solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

System suitability solution: Dissolve a suitable amount of USP Zolpidem Related Compound A RS in Standard stock solution to obtain a solution containing 1 μ g/mL of zolpidem related compound A. Dilute 1 mL of the resulting solution with Mobile phase to 5 mL.

System suitability

Sample: System suitability solution

Suitability requirements

Resolution: NLT 1.5 between zolpidem related compound A and zolpidem

Tailing factor: NMT 3.0 for the zolpidem peak

Relative standard deviation: NMT 2.0% for the zolpidem peak

Analysis

Sample: Sample solution

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_T) \times (1/F) \times 100$$

r_u = peak response for each impurity from the Sample solution

r_T = sum of the peak responses for all the peaks from the Sample solution

F = relative response factor of the corresponding impurity from Table 4

Acceptance criteria: See Table 4.

Table 4

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Zolpidem acid ^a	0.3	• 1.2 • (RB 1-Jul-2011)	0.20
Zolpidem related compound A ^b	0.9	1.0	0.20
Zolpidem	1.0	—	—
Any unspecified degradation product	—	1.0	0.20
Total impurities	—	—	0.5

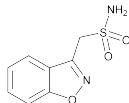
^a 2-(6-Methyl-2-*p*-tolylimidazo[1,2-*a*]pyridin-3-yl)acetic acid.

^b N,N-Dimethyl-2-(7-methyl-2-*p*-tolylimidazo[1,2-*a*]pyridin-3-yl)acetamide.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers, and store at controlled room temperature.

Add the following:


- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used. • (RB 1-Jul-2011)

• USP REFERENCE STANDARDS (11)

USP Zolpidem Related Compound A RS

N,N-Dimethyl-2-(7-methyl-2-*p*-tolylimidazo[1,2-*a*]pyridin-3-yl)acetamide. $C_{19}H_{21}N_3O$ 307.39

USP Zolpidem Tartrate RS

Zonisamide

$C_8H_8N_2O_3S$ 212.23
1,2-Benzisoxazole-3-methanesulfonamide [68291-97-4].

DEFINITION

Zonisamide contains NLT 98.0% and NMT 102.0% of $C_8H_8N_2O_3S$, calculated on the anhydrous basis.

IDENTIFICATION

- **A. INFRARED ABSORPTION (197K)**
- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY**PROCEDURE**

Buffer: 1.36 g/L of monobasic potassium phosphate in water. Adjust the pH to 3.0 ± 0.1 with 10% phosphoric acid.

Mobile phase: Acetonitrile, methanol, and *Buffer* (1:1:8)

Standard solution: 0.1 mg/mL of USP Zonisamide RS in *Mobile phase*

Sample solution: 0.1 mg/mL of Zonisamide in *Mobile phase*

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1.5 mL/min

Injection size: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 5000 theoretical plates

Tailing: NMT 1.8

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of $C_8H_8N_2O_3S$ in the portion of Zonisamide taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of zonisamide from the *Sample solution*

r_s = peak response of zonisamide from the *Standard solution*

C_s = concentration of USP Zonisamide RS in the *Standard solution* (mg/mL)

C_u = concentration of Zonisamide in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES**Inorganic Impurities**

- **HEAVY METALS, Method II (231):** NMT 10 ppm

- **RESIDUE ON IGNITION (281):** NMT 0.1%

Organic Impurities**PROCEDURE**

Mobile phase: Prepare as directed in the *Assay*.

Standard solution: 1 μ g/mL of USP Zonisamide RS and 1.5 μ g/mL of USP Zonisamide Related Compound A RS in *Mobile phase*

Sample solution: 1.0 mg/mL of Zonisamide in *Mobile phase*

Chromatographic system: Prepare as directed in the *Assay*.

Run time: 2 times the retention time of the zonisamide peak

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 10.0 between zonisamide related compound A and zonisamide

Relative standard deviation: NMT 10.0% for both zonisamide and zonisamide related compound A peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of zonisamide related compound A in the portion of Zonisamide taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of zonisamide related compound A from the *Sample solution*

r_s = peak response of zonisamide related compound A from the *Standard solution*

C_s = concentration of USP Zonisamide Related Compound A RS in the *Standard solution* (mg/mL)

C_u = concentration of zonisamide related compound A in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of zonisamide related compound A (free acid), 213.23

M_{r2} = molecular weight of USP Zonisamide Related Compound A RS (sodium salt), 235.23

Calculate the percentage of any unspecified impurity in the portion of Zonisamide taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of zonisamide from the *Standard solution*

C_s = concentration of USP Zonisamide RS in the *Standard solution* (mg/mL)

C_u = concentration of Zonisamide in the *Sample solution* (mg/mL)