

System suitability

Samples: Standard solution and System suitability solution
 [NOTE—The relative retention times for trenbolone acetate related compound A and trenbolone acetate are 1.2 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 3.0 between trenbolone acetate and trenbolone acetate related compound A, System suitability solution

Column efficiency: NLT 8000 theoretical plates for the trenbolone acetate peak, System suitability solution

Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Sample: Sample solution

Calculate the percentage of each impurity in the portion of Trenbolone Acetate taken:

$$\text{Result} = (100 \times r_u) / [(r_s + S) \times F]$$

r_u = peak response of each impurity from the Sample solution
 r_s = peak response of Trenbolone Acetate from Sample solution
 S = sum of the peak responses of each impurity, each divided by their respective response factor
 F = relative response factor (see Impurity Table 1)

Acceptance criteria

Individual impurities: See Impurity Table 1.

Total specified and unspecified impurities: NMT 2.0%

Reporting level for impurities: NMT 0.10%

Impurity Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Trenbolone related compound B ^a	0.4	1.04	1.0
Trenbolone related compound C ^b	0.8	1.10	0.5
Trenbolone acetate	1.0	—	—
Related compound A ^c	1.2	1.0	0.5
Any unspecified impurity	—	1.00 ^d	0.5

^aTrenbolone.

^bTrenbolone acetate 17 α -isomer.

^cConjugated dihydrotrenbolone acetate, or 11,12-dihydrotrenbolone acetate.

^dUnless determined otherwise.

SPECIFIC TESTS**• ABSORBANCE**

Sample solution: 100 mg/mL in dehydrated alcohol

Spectrometric conditions

(See Spectrophotometry and Light-Scattering (851).)

Analytical wavelength: 440 nm

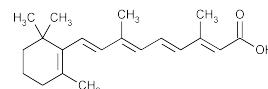
Cell: 2 cm

Blank: Dehydrated alcohol

Analysis

Samples: Sample solution and Blank

Acceptance criteria: NMT 0.3


• OPTICAL ROTATION, Specific Rotation (781S): +39° to +43°

Sample solution: 5 mg/mL in methanol

• LOSS ON DRYING (731): Dry a sample in a vacuum at 60° for 2 h; it loses NMT 0.5% of its weight.**ADDITIONAL REQUIREMENTS****• PACKAGING AND STORAGE:** Preserve in tight containers, and store in a refrigerator.**• LABELING:** Label it to indicate that it is for veterinary use only.**• USP REFERENCE STANDARDS (11)**

USP Trenbolone Acetate RS

USP Trenbolone Acetate System Suitability Mixture RS
 Mixture containing trenbolone and conjugated dihydrotrenbolone acetate in a matrix of trenbolone acetate.

Tretinoin

$C_{20}H_{28}O_2$ 300.44

Retinoic acid.

all *trans*-Retinoic acid [302-79-4].

» Tretinoin contains not less than 97.0 percent and not more than 103.0 percent of $C_{20}H_{28}O_2$, calculated on the dried basis.

Packaging and storage—Preserve in tight containers, preferably under an atmosphere of an inert gas, protected from light.

USP Reference standards (11)—

USP Isotretinoin RS

USP Tretinoin RS

NOTE—Avoid exposure to strong light, and use low-actinic glassware in the performance of the following procedures.

Identification—

A: Infrared Absorption (197M).

B: Ultraviolet Absorption (197U)—

Solution: 4 μ g per mL.

Medium: acidified isopropyl alcohol (prepared by diluting 1 mL of 0.01 N hydrochloric acid with isopropyl alcohol to 1000 mL).

Absorptivities at 352 nm, calculated on the dried basis, do not differ by more than 3.0%.

Loss on drying (731)—Dry it in vacuum at room temperature for 16 hours; it loses not more than 0.5% of its weight.

Residue on ignition (281): not more than 0.1%.

Heavy metals, Method II (231): 0.002%.

Limit of isotretinoin—

Mobile phase—Prepare a suitable filtered and degassed mixture of isoctane, isopropyl alcohol, and glacial acetic acid (99.65:0.25:0.1), making adjustments if necessary (see System Suitability under Chromatography (621)).

System suitability solution—Dissolve a quantity of USP Tretinoin RS in a minimum amount of methylene chloride, add a suitable amount of isoctane to obtain a solution having a tretinoin concentration of about 250 μ g per mL, and mix.

Standard solution—Dissolve an accurately weighed quantity of USP Isotretinoin RS in a minimum quantity of methylene chloride, and add isoctane to obtain a solution having a known concentration of about 250 μ g per mL.

System suitability preparation—Pipet 5 mL of Standard solution into a 100-mL volumetric flask, add System suitability solution to volume, and mix.

Standard preparation—Pipet 5 mL of Standard solution into a 100-mL volumetric flask, add isoctane to volume, and mix.

Test preparation—Transfer about 25 mg of Tretinoin, accurately weighed, to a 100-mL volumetric flask, dissolve in a minimum quantity of methylene chloride, add isoctane to volume, and mix.

Chromatographic system (see Chromatography (621))—The liquid chromatograph is equipped with a 352-nm detector and a 4.0-mm \times 25-cm column containing packing L3. The flow

rate is about 1 mL per minute. Chromatograph about 20 μ L of *System suitability preparation*, and record the peak responses. The relative retention times for isotretinoin and tretinoi are about 0.84 and 1.00, respectively. The relative standard deviation of the isotretinoin peak response in replicate injections is not more than 2.0%, and the resolution, R , of isotretinoin and tretinoi is not less than 2.0.

Procedure—Separately inject equal volumes (about 20 μ L) of the *Standard preparation* and the *Test preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the percentage of isotretinoin taken by the formula:

$$10(C / W)(r_U / r_S)$$

in which C is the concentration, in μ g per mL, of USP Isotretinoin RS in the *Standard preparation*, W is the weight, in mg, of Tretinoi taken, and r_U and r_S are the peak responses of the isotretinoin peaks obtained from the *Test preparation* and the *Standard preparation*, respectively. The content of isotretinoin is not more than 5.0%.

Assay—Dissolve about 240 mg of Tretinoi, accurately weighed, in 50 mL of dimethylformamide, add 3 drops of a 1 in 100 solution of thymol blue in dimethylformamide, and titrate with 0.1 N sodium methoxide VS to a greenish endpoint. Perform a blank determination, and make any necessary correction. Each mL of 0.1 N sodium methoxide is equivalent to 30.04 mg of $C_{20}H_{28}O_2$.

Tretinoi Cream

» Tretinoi Cream contains not less than 90.0 percent and not more than 120.0 percent of the labeled amount of tretinoi.

Packaging and storage—Preserve in collapsible tubes or in tight, light-resistant containers.

USP Reference standards (11)—

USP Tretinoi RS

Identification—The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation* obtained as directed in the *Assay*.

Minimum fill (755): meets the requirements.

Assay—[NOTE—Avoid exposure to strong light, and use low-actinic glassware in the performance of the following procedure. Use stabilized tetrahydrofuran in the preparation of the *Standard preparation* and the *Assay preparation*.]

Dilute phosphoric acid—Dilute 10 mL of phosphoric acid with water to 100 mL.

Phosphate buffer—Dissolve 1.38 g of monobasic sodium phosphate in 1000 mL of water, adjust with *Dilute phosphoric acid* to a pH of 3.0, and mix.

Diluting solution—Prepare a mixture of water and *Dilute phosphoric acid* (9:1).

Mobile phase—[NOTE—*Phosphate buffer* and tetrahydrofuran may be filtered and degassed separately before mixing.] Prepare a filtered and degassed mixture of *Phosphate buffer* and tetrahydrofuran (58:42). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Standard preparation—Dissolve an accurately weighed quantity of USP Tretinoi RS in tetrahydrofuran to obtain a solution having a known concentration of about 0.4 mg per mL. Dilute a known volume of this solution, quantitatively and stepwise if necessary, with a mixture of tetrahydrofuran and *Diluting solution* (3:2) to obtain a solution having a known concentration of about 4 μ g per mL.

Assay preparation—Transfer an accurately weighed quantity of Cream, equivalent to 1.0 mg of tretinoi, to a 50-mL volumetric flask, and add 20.0 mL of tetrahydrofuran. Shake the flask to disperse the cream, dilute with tetrahydrofuran to volume, mix, and filter, if necessary. Transfer 5.0 mL of this solution to a 25-mL volumetric flask, dilute with a mixture of tetrahydrofuran and *Diluting solution* (3:2) to volume, mix, and filter.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 365-nm detector and a 3.9-mm \times 15-cm column that contains 4- μ m packing L1. The flow rate is about 1 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 25 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of tretinoi ($C_{20}H_{28}O_2$) in the portion of Cream taken by the formula:

$$0.250C(r_U / r_S)$$

in which C is the concentration, in μ g per mL, of USP Tretinoi RS in the *Standard preparation*, and r_U and r_S are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Tretinoi Gel

DEFINITION

Tretinoi Gel contains NLT 90.0% and NMT 130.0% of the labeled amount of $C_{20}H_{28}O_2$.

IDENTIFICATION

- The retention time of the major peak in the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

[NOTE—Avoid exposure to strong light, and use low-actinic glassware in the performance of the following procedure.]

Mobile phase—Prepare a mixture of acetonitrile and water (17:3). Add 5 mL of glacial acetic acid to each L of the mixture, mix well, filter, and degas.

Standard solution—0.02 mg/mL of USP Tretinoi RS in methanol. [NOTE—Sonicate if needed.]

Sample solution—Transfer Tretinoi Gel, equivalent to 2 mg of tretinoi, to a 100-mL volumetric flask. Add about 70 mL of methanol, sonicate with intermittent shaking for 30 min, and dilute with methanol to volume. Centrifuge a portion of this solution at 3000 rpm for 10 min. Use the clear supernatant.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)