Table 1

Name	Relative Retention Time	Relative Response Factor (<i>F</i>)	Limit (%)
USP Travoprost Related Compound A RS	about 0.11	1.0	0.2
Epoxide derivative ¹	about 0.55	1.0	0.4
15- <i>epi</i> Diastereomer ²	about 0.90	1.1	0
5,6-trans Isomer ³	about 1.16	1.0	3
15-Keto derivative ⁴	about 1.45	1.6	0.3

¹(5Z)-(9S,11R,15S)-9,11,15-Trihydroxy-13,14-epoxy-16-(*m*-trifluoromethylphenoxy)-17,18,19,20-tetranor-5-prostadienoic acid, isopropyl ester. ²(5Z,13E)-(9S,11R,15S)-9,11,15-Trihydroxy-16-(*m*-trifluoromethylphenoxy)-17,18,19,20-tetranor-5,13-prostadienoic acid, isopropyl ester. ³(5E,13E)-(9S,11R,15R)-9,11,15-Trihydroxy-16-(*m*-trifluoromethylphenoxy)-17,18,19,20-tetranor-5,13-prostadienoic acid, isopropyl ester. ⁴(5Z,13E)-(9S,11R)-9,11,-Dihydroxy-15-oxo-16-(*m*-trifluoromethylphenoxy)-17,18,19,20-tetranor-5,13-prostadienoic acid, isopropyl ester.

Related compounds—

Buffer, Mobile phase, Standard preparation, and Chromatographic system—Proceed as directed in the Assay.

Test solution—Use the Assay preparation.

Procedure—Inject a volume (about 100 µL) of the Test solution into the chromatograph, record the chromatogram, and measure the peak responses. Calculate the percentage of each impurity in the portion of Travoprost taken by the formula:

$100(1/F)(r_i/r_s)$

in which F is the relative response factor for each impurity; r_i is the individual peak response of each individual impurity; and r_s is the sum of the responses of all the peaks. In addition to not exceeding the limits for each impurity in *Table 1*, not more than 0.1% of any other individual impurity is found, and not more than 4.0% of total impurities is found.

Assay-

Buffer—Add 2.0 mL of phosphoric acid to 1 L of water. Adjust with sodium hydroxide to a pH of 3.0.

Mobile phase—Prepare a filtered and degassed mixture of Buffer and acetonitrile (7:3). Make adjustments if necessary (see System Suitability under Chromatography (621)).

Standard preparation—Use USP Travopost RS without dilution (0.5 mg per mL).

Assay preparation—Transfer about 25 mg of Travoprost, accurately weighed, to a 50-mL volumetric flask, and dissolve in 15 mL of acetonitrile. Add 25 mL of water, mix, and wait until the solution reaches room temperature. Dilute with water to volume, and mix.

Chromatographic system (see Chromatography (621))—The liquid chromatograph is equipped with a 220-nm detector and a 4.6-mm × 5-cm column that contains packing L1. The flow rate is about 3.0 mL per minute. Chromatograph the Standard preparation, and record the peak responses as directed for Procedure: the relative retention times are about 1.0 for travoprost and 1.1 for 5,6-trans isomer; the resolution, R, between travoprost and the 5,6-trans isomer is not less than 1.5; the column efficiency is not less than 1500 theoretical plates; the tailing factor is not more than 2.0; and the relative standard deviation for replicate injections is not more than 2.0%. [NOTE—USP Travoprost RS contains a small percentage of 5,6-trans isomer.]

Procedure—Separately inject equal volumes (about 100 μ L) of the Standard preparation and the Assay preparation into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the percentage of $C_{26}H_{35}F_3O_6$ in the portion of Travoprost taken by the formula:

$100(C_S / C_U)(r_U / r_S)$

in which C_S is the concentration, in mg per mL, of travoprost in the *Standard preparation*; C_U is the concentration of Travoprost

in the Assay preparation; and r_U and r_S are the peak areas obtained from the Assay preparation and the Standard preparation, respectively.

Travoprost Ophthalmic Solution

DEFINITION

Travoprost Ophthalmic Solution is a sterile buffered aqueous solution of Travoprost. It contains NLT 90.0% and NMT 110.0% of the labeled amount of travoprost ($C_{26}H_{35}F_3O_6$). It may contain suitable stabilizers, buffers, and antimicrobial agents.

[**ČAUTION**—Great care should be taken when handling the active ingredient to avoid contact with the body.]

IDENTIFICATION

 The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 2.18 mg/mL of sodium 1-octanesulfonate in water. Adjust with phosphoric acid to a pH of 3.5.

Mobile phase: Acetonitrile and Buffer (17:33)

Standard solution: 0.04 mg/mL of travoprost from USP Travoprost RS in a mixture of acetonitrile and water (3:7) Sample solution: Use the Ophthalmic Solution without dilution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 15-cm; packing L1

Flow rate: 2.0 mL/min Injection size: 100 μ L System suitability

Sample: Standard solution
[NOTE—USP Travoprost RS contains a small percentage of the 5,6-trans isomer. The relative retention times for travoprost and the 5,6-trans isomer are 1.0 and 1.1, respectively.]

Suitability requirements

Resolution: NLT 1.5 between travoprost and the 5,6-

trans isomer

Column efficiency: NLT 2000 theoretical plates Relative standard deviation: NMT 2.0% Analysis

Samples: Standard solution and Sample solution Calculate the percentage of C₂₆H₃₅F₃O₆ in the portion of Ophthalmic Solution taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

= peak response from the Sample solution = peak response from the Standard solution $\begin{matrix} r_{\text{S}} \\ C_{\text{S}} \end{matrix}$ = concentration of travoprost in the Standard solution (mg/mL)

= nominal concentration of travoprost in the C_{U} Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

IMPURITIES

Organic Impurities

PROCEDURE 1: LIMIT OF TRAVOPROST RELATED COMPOUND A

Buffer: Add 1.0 mL of phosphoric acid to 1.0 L of water, and adjust with sodium hydroxide to a pH of 3.0. Mobile phase: Acetonitrile and Buffer (6:19)

Standard solution: 0.3 μg/mL of USP Travoprost Related Compound A RS in a mixture of acetonitrile and water (1:4)

Sample solution: Use the Ophthalmic Solution without dilution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 5-cm; packing L1 **Flow rate:** 3.0 mL/min

Injection size: 100 µL System suitability

Sample: Standard solution Suitability requirements

Column efficiency: NLT 2000 theoretical plates Relative standard deviation: NMT 10.0%

Samples: Standard solution and Sample solution Calculate the percentage of travoprost related compound A in the portion of Ophthalmic Solution taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

= peak response from the Sample solution rи = peak response from the Standard solution = concentration of USP Travoprost Related C_S

Compound A RS in the Standard solution (mg/mL)

 C_U = concentration of travoprost in the Sample solution (mg/mL)

Acceptance criteria

Travoprost related compound A: NMT 0.2%

PROCEDURE 2: LIMIT OF DEGRADATION PRODUCTS

Buffer, Mobile phase, Standard solution, Sample solution, Chromatographic system, and System suitability: Prepare as directed in the Assay.

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each degradation product in the portion of Ophthalmic Solution taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

= peak response of each degradation product r_{U} from the Sample solution

= peak response of travoprost from the Standard r_s solution

= concentration of USP Travoprost RS in the C_S Standard solution (mg/mL)

 C_U = nominal concentration of travoprost in the Sample solution (mg/mL)

= relative response factor (see *Impurity Table 1*) Acceptance criteria

Degradation products: See Impurity Table 1. Total impurities: NMT 5.5%. [NOTE—Sum of all degradation products, including travoprost related compound A, obtained in Procedure 1.]

Impurity Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
5,6-trans Isomer	1.1	1.0	5.0
15-keto Derivative	1.4	1.7	0.3

SPECIFIC TESTS

- STERILITY TESTS (71): Meets the requirements when tested as directed under Test for Sterility of the Product to Be Examined, Membrane Filtration
- **PH** (**791**): 5.5–6.5

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers. Store between 2° and 25°
- USP REFERENCE STANDARDS $\langle 11 \rangle$

USP Travoprost RS USP Travoprost Related Compound A RS (5Z,13E)-(9S,11R,15R)-9,11,15-Trihydroxy-16-(mtrifluoromethylphenoxy)-17,18,19,20-tetranor-5,13prostadienoic acid. $C_{23}H_{29}F_3O_6$ 458.52

Trazodone Hydrochloride

 $C_{19}H_{22}CIN_5O \cdot HCI 408.32$

1,2,4-Triazolo[4,3-a]pyridin-3(2H)-one,2-[3-[4-(3-chlorophenyl)-

1-piperazinyl]propyl]-, monohydrochloride.
2-[3-[4-(*m*-Chlorophenyl)-1-piperazinyl]propyl]s-triazolo[4,3-*a*]-pyridin-3(2*H*)-one monohydrochloride [25332-39-2].

» Trazodone Hydrochloride contains not less than 97.0 percent and not more than 102.0 percent of C₁₉H₂₂ClN₅O · HCl, calculated on the dried basis.

Packaging and storage—Preserve in tight, light-resistant

USP Reference standards (11)—

USP Trazodone Hydrochloride RS

Identification-

A: Infrared Absorption (197K).

B: The retention time of the major peak in the chromatogram of the Assay preparation corresponds to that of the Standard preparation, both relative to the internal standard, as obtained in the Assay.

Loss on drying (731)—Dry it at a pressure of about 50 mm of mercury at 105° for 3 hours: it loses not more than 0.5% of its weight.