Acceptance criteria

Individual impurities: See Impurity Table 1.

Impurity Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
Trandolaprilate ^a	0.41	1.00	2.0	
Trandolapril	1.00	1.00	_	
Trandolapril related compound C	1.84	_	*	
Trandolapril related compound D	1.96	0.78	5.0	
Any other individual impurity		1.00	1.0	
Total impurities	_	_	7.0	

^a (2S,3aR,7aS)-1-[(2S)-2-[[(1S)-1-Carboxy-3-phenylpropyl]amino]propanoyl] octahydro-1H-indole-2-carboxylic acid.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers. Store at controlled room temperature.
- USP REFERENCE STANDARDS (11)

USP Trandolapril RS

USP Trandolapril Related Compound C RS

(2S,3aR,7aS)-1-[N-[(S)-1-Carboxy-3-cyclohexylpropyl]-Lalanyl]hexahydro-2-indolinecarboxylic acid 1-ethyl ester hydrochloride.

 $C_{24}H_{40}N_2O_5 \cdot HCI$ 473.05

USP Trandolapril Related Compound D RS (S)-Ethyl 2-[(3S,5aS,9aR,10aS)-3-methyl-1,4dioxodecahydropyrazino[1,2-a]indol-2(1H)-yl)]-4phenylbutanoate.

C₂₄H₃₂N₂O₄ 412.52

Tranexamic Acid

 $C_8H_{15}NO_2$

157.2

trans-4-(Aminomethyl)cyclohexanecarboxylic acid; Cyclohexanecarboxylic acid, 4-(aminomethyl)-, trans [1197-18-

DEFINITION

Tranexamic Acid contains NLT 99.0% and NMT 101.0% of C₈H₁₅NO₂, calculated on the dried basis.

IDENTIFICATION

Infrared Absorption (197K)

ASSAY

PROCEDURE

Sample solution: 140 mg of Tranexamic Acid in 20 mL of glacial acetic acid

Titrimetric system (See Titrimetry (541).) Mode: Direct titration

Titrant: 0.1 N perchloric acid VS Endpoint detection: Potentiometric

Analysis

Sample: Sample solution

Titrate with 0.1 N perchloric acid VS, determining the endpoint potentiometrically. Carry out a blank titration. Each mL of 0.1 N perchloric acid is equivalent to 15.72 mg of C8H15NO2.

Acceptance criteria: 99.0%-101.0% on the dried basis

IMPURITIES

Inorganic Impurities

- RESIDUE ON IGNITION (281): NMT 0.1%; 1-g sample is used
 HEAVY METALS, Method II (231): NMT 10 ppm
 CHLORIDE AND SULFATE, Chloride (221): A 0.51-g portion shows no more chloride than corresponds to 0.1 mL of 0.020 N hydrochloric acid (0.014%).

Organic Impurities

PROCEDURE

Mobile phase: Dissolve 11.0 g of anhydrous monobasic sodium phosphate in 500 mL of water, and add 5 mL of triethylamine, followed by 1.4 g of sodium lauryl sulfate. Adjust with diluted phosphoric acid (10% w/w) to a pH of 2.5, and dilute with water to 600 mL. Mix this solution with 400 mL of methanol.

System suitability solution: 0.2 mg/mL of USP Tranexamic Ácid RS and 0.002 mg/mL of USP Tranexamic Acid Related Compound C RS in water

Standard solution: 50 µg/mL of USP Tranexamic Acid RS in water

Sample solution: 10 mg/mL of Tranexamic Acid in water Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection size: 20 μL

Run time: 3 times the retention time of tranexamic acid

System suitability

Sample: System suitability solution

Suitability requirements

Resolution: NLT 2.0 between tranexamic acid and 0.002 mg/mL of tranexamic acid related compound C

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each individual impurity in the portion of Tranexamic Acid taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (0.1F)$$

= peak response for each impurity from the Sample ru solution

= peak response for tranexamic acid from the Standard solution

= concentration of USP Tranexamic Acid RS in the C_S Standard solution (µg/mL)

= concentration of Tranexamic Acid in the Sample C_U solution (mg/mL)

= relative response factor (see Impurity Table 1)

Acceptance criteria

Individual impurities: See Impurity Table 1.
Total impurities: NMT 0.2%

[NOTE—Disregard any peak less than 0.025%.]

Impurity Table 1

				
Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
Tranexamic acid related compound A ^a	2.1	1	0.1	
Tranexamic acid related compound B ^b	1.5	1.2	0.2	

a trans, trans-4,4'-(Iminodimethylene)di(cyclohexanecarboxylic)acid.

^{*} Process-related impurity.

^b cis-4-(Aminomethyl)cyclohexanecarboxylic acid.

^c (RS)-4-(Aminomethyl) cyclohex-1-enecarbocylic acid.

d 4-Aminomethyl benzoic acid.

Impurity Table 1 (Continued)

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Tranexamic acid related compound C ^c	1.1	0.005	0.1
Tranexamic Acid	1.0	1.0	_
Tranexamic acid related compound D ^d	1.3	0.006	0.1

- ^a trans, trans-4,4'-(Iminodimethylene)di(cyclohexanecarboxylic)acid.
- ^b cis-4-(Aminomethyl)cyclohexanecarboxylic acid.
- c (RS)-4-(Aminomethyl) cyclohex-1-enecarbocylic acid.
- d 4-Aminomethyl benzoic acid.

SPECIFIC TESTS

• Loss on Drying (731): Dry 1.00 g at 105° under vacuum for 2 h. It loses NMT 0.5% of its weight.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers, and store at a temperature not exceeding 30°.
- USP REFERENCE STANDARDS (11)

USP Tranexamic Acid RS

USP Tranexamic Acid Related Compound C RS (RS)-4-(Aminomethyl)cyclohex-1-enecarbocylic acid.

C₈H₁₃NO₂ 155

Tranylcypromine Sulfate

 $(C_9H_{11}N)_2\cdot H_2SO_4$

364.46

Cyclopropanamine, 2-phenyl-, *trans*-(±)-, sulfate (2:1); (±)-*trans*-2-Phenylcyclopropylamine sulfate (2:1) [13492-01-8].

DEFINITION

Tranylcypromine Sulfate contains NLT 98.0% and NMT 102.0% of $(C_9H_{11}N)_2 \cdot H_2SO_4$, calculated on the dried basis.

IDENTIFICATION

- A. Infrared Absorption $\langle 197K \rangle$
- **B.** The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- C. IDENTIFICATION TESTS—GENERAL, Sulfate (191): Meets the requirements

ASSAY

PROCEDURE

Buffer: Dissolve 3.4 g of monobasic ammonium phosphate in about 900 mL of water in a 1-L volumetric flask. Adjust with phosphoric acid to a pH of 2.2 ± 0.1 , and dilute with water to volume.

Mobile phase: Methanol and Buffer (3:7)

0.05 N sulfuric acid: Cautiously add 1.3 mL of sulfuric acid to 100 mL of water, cool to room temperature, and dilute to 1000 mL.

Diluent: Methanol, water, and 0.05 N sulfuric acid (1:3:1) Standard stock solution: Using a sonicator, dissolve USP Tranylcypromine Sulfate RS in 0.05 N sulfuric acid and methanol (about 30% of the final volume of each solvent). Dilute with Diluent to obtain a 400 µg/mL solution.

with *Diluent* to obtain a 400 μg/mL solution. **Standard solution:** 40 μg/mL of USP Tranylcypromine Sulfate RS in *Diluent*, prepared from the *Standard stock solution*

Sample stock solution: Using a sonicator, dissolve Tranyl-cypromine Sulfate in methanol and 0.05 N sulfuric acid (about 30% of the final volume of each solvent). Dilute with Diluent to obtain a 400 µg/mL solution.

Sample solution: 40 µg/mL tranylcypromine sulfate in Dilu-

ent, prepared from the Sample stock solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 25-cm; 4- μ m packing L11

Column temperature: 30° Flow rate: 1 mL/min Injection size: 20 μL System suitability Sample: Standard solution

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of (C₉H₁₁N)₂ · H₂SO₄ in the portion taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the Sample solution
 r_S = peak response from the Standard solution

rs = peak response from the Standard solution
 Cs = concentration of USP Tranylcypromine Sulfate RS

 C_s = concentration of USP Transferypromine Sulfate RS in the Standard solution (μ g/mL)

C_U = concentration of tranylcypromine sulfate in the Sample solution (μg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

Inorganic Impurities

• Residue on Ignition (281): NMT 0.1%

• HEAVY METALS, Method II (231): NMT 20 ppm

Organic Impurities

39

PROCEDURE

Buffer, 0.05 N sulfuric acid, and **Diluent:** Proceed as directed in the *Assay*.

Solution A: Methanol and Buffer (3:17)
Solution B: Methanol and Buffer (3:7)
Mobile phase: See the gradient table below.

Time (min)	Solution A (%)	Solution B (%)
0	100	0
20	100	0
25	0	100
37	0	100

100

100

0

Standard stock solution: 14 μg/mL of USP Tranylcypromine Sulfate RS, and 60 μg/mL each of USP Tranylcypromine Related Compound A RS and USP Tranylcypromine Related Compound B RS in *Diluent*.

[NOTE—Sonicate as needed.]

Standard solution: Transfer a portion of the Standard stock solution to a suitable volumetric flask containing methanol and 0.05 N sulfuric acid (30% of the final volume of each solvent). Dilute with Diluent to volume to obtain a solution containing 0.7 µg/mL of USP Tranylcypromine Sulfate RS and 3.0 µg/mL each of USP Tranylcypromine Related Compound A RS and USP Tranylcypromine Related Compound B RS.

Sample solution: Using a sonicator, dissolve Tranylcypromine Sulfate in methanol and 0.05 N sulfuric acid (about 30% of the final volume of each solvent). Dilute with *Diluent* to obtain a solution containing 680 μg/mL of tranylcypromine sulfate.