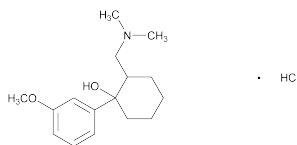


add 15 mL of methanol, mix, and sonicate for not less than 8 minutes. Add 22.5 mL of 0.02 M Potassium phosphate buffer, cool to room temperature, dilute with *Mobile phase* to volume, and mix.

Assay preparation—Transfer about 38 mg of Torsemide, accurately weighed, to a 100-mL volumetric flask, add 30 mL of methanol, mix, and sonicate for not less than 8 minutes. Add 45 mL of 0.02 M Potassium phosphate buffer, cool to room temperature, dilute with *Mobile phase* to volume, and mix.


Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 288-nm detector and a 4.6-mm × 15-cm column that contains 7-μm packing L1. The flow rate is about 1.5 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the tailing factor is not more than 2.0; and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 20 μL) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the amount, in mg, of C₁₆H₂₀N₄O₃S in the portion of Torsemide taken by the formula:

$$100C(r_u / r_s)$$

in which C is the concentration, in mg per mL, of USP Torsemide RS in the *Standard preparation*; and r_u and r_s are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Tramadol Hydrochloride

C₁₆H₂₅NO₂ · HCl
 (±)-cis-2-[(Dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol hydrochloride;
 (±)-cis-2-[(Dimethylamino)methyl]-1-(m-methoxyphenyl)cyclohexanol hydrochloride [36282-47-0].

DEFINITION

Tramadol Hydrochloride contains NLT 98.0% and NMT 102.0% of C₁₆H₂₅NO₂ · HCl, calculated on the anhydrous basis.

IDENTIFICATION

- A. INFRARED ABSORPTION** (197K)
- B. IDENTIFICATION TESTS—GENERAL, Chloride** (191): An aqueous solution (1 in 100) meets the requirements.

ASSAY

- PROCEDURE**

Solution A: Dissolve 0.5 mL of trifluoroacetic acid in 1000 mL of water.

Mobile phase: Acetonitrile and *Solution A* (30:70)

System suitability solution: 0.05 mg/mL each of USP Tramadol Hydrochloride RS and USP Tramadol Hydrochloride Related Compound A RS in *Mobile phase*.

Standard solution: 1.5 mg/mL USP Tramadol Hydrochloride RS in *Mobile phase*.

Sample solution: 1.5 mg/mL tramadol hydrochloride in *Mobile phase*.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 270 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 1 mL/min

Injection size: 20 μL

System suitability

Sample: *System suitability solution*

[NOTE—The relative retention times for tramadol related compound A and tramadol are about 0.9 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between tramadol related compound A and tramadol

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of C₁₆H₂₅NO₂ · HCl in the portion of Tramadol Hydrochloride taken:

$$\text{Result} = (r_u / r_s) \times (C_s / C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of USP Tramadol Hydrochloride in the *Standard solution* (mg/mL)

C_u = nominal concentration of Tramadol Hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

Inorganic Impurities

- RESIDUE ON IGNITION** (281): NMT 0.1%

- HEAVY METALS, Method I** (231): 20 ppm

- CONTENT OF CHLORIDE**

Sample solution: 150 mg of Tramadol Hydrochloride in 40 mL of water

Analysis: To the *Sample solution* add, with stirring, 7.5 mL of 4 N nitric acid and 15.0 mL of 0.1 N silver nitrate, and titrate with 0.1 N ammonium thiocyanate VS, determining the endpoint potentiometrically, and using a silver-glass electrode system. Each mL of 0.1 N ammonium thiocyanate is equivalent to 3.545 mg of chloride.

Acceptance criteria: 11.6%–12.1% of chloride is found.

Organic Impurities

- PROCEDURE 1: LIMIT OF TRAMADOL RELATED COMPOUND B** (2-(dimethylaminomethyl)-1-cyclohexanone hydrochloride)

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture

Standard solution: 0.1 mg/mL USP Tramadol Related Compound B RS in methanol

Sample solution: 50 mg/mL Tramadol Hydrochloride in methanol

Developing solvent system: Toluene, isopropyl alcohol, and 25% ammonia water (80:19:1)

Sodium nitrite solution: 50 mg/mL sodium nitrite in water

Analysis: Separately apply about 10 μL each of the *Sample solution* and the *Standard solution* to the plate, and develop the plate until the solvent front is 10 cm above the line of application. Remove the plate, spray with Dragendorff's TS, and air-dry for 5 min. Spray the dried plate with *Sodium nitrite solution* until the spot from tramadol related compound B in the *Standard solution* is visible. Any secondary spot from the *Sample solution* corresponding to tramadol related compound B is not more intense than a corresponding spot from the *Standard solution*.

Acceptance criteria: NMT 0.2%

- PROCEDURE 2**

Mobile phase, System suitability solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the *Assay*.

Analysis**Sample:** *Sample solution*

Calculate the percentage of each impurity in the portion of Tramadol Hydrochloride taken:

$$\text{Result} = (r_u/r_T) \times 100$$

- r_u = peak response of each impurity from the *Sample solution*
 r_T = sum of all the peak responses from the *Sample solution*

Acceptance criteria

Tramadol related compound A: NMT 0.2%

Individual impurities: NMT 0.1%

Total impurities: NMT 0.4%

SPECIFIC TESTS

- **WATER DETERMINATION, Method 1a (921):** NMT 0.5%

ACIDITY

Sample solution: 500 mg of Tramadol Hydrochloride in 10 mL of water

Analysis: To the *Sample solution* add 0.2 mL of methyl red TS and 0.2 mL of 0.01 N hydrochloric acid VS, and titrate with 0.01 N sodium hydroxide VS.

Acceptance criteria: NMT 0.4 mL of 0.01 N sodium hydroxide is required to produce a yellow color.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, and store at controlled room temperature.
- **USP REFERENCE STANDARDS (11)**
 - USP Tramadol Hydrochloride RS
 - USP Tramadol Related Compound A RS
 $RS, SR-1-(3-Methoxyphenyl)-2-(dimethylaminomethyl-cyclohexanol hydrochloride.$
 - USP Tramadol Related Compound B RS
 $2-(Dimethylaminomethyl)-1-cyclohexanone hydrochloride.$

Tramadol Hydrochloride Tablets

DEFINITION

Tramadol Hydrochloride Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of tramadol hydrochloride ($C_{16}H_{25}NO_2 \cdot HCl$).

IDENTIFICATION**A. INFRARED ABSORPTION (197K)**

Sample solution: Transfer powdered Tablets, equivalent to 200 mg of tramadol hydrochloride, into a 50-mL volumetric flask, add 20 mL of dichloromethane, and sonicate. Filter, and transfer the clear supernatant to a separating funnel. Extract the dichloromethane layer with two 10-mL portions of 2 N sodium hydroxide, and discard the aqueous layer. Dry the dichloromethane layer over anhydrous sodium sulfate, and filter. Evaporate this solution to dryness under a stream of nitrogen.

Acceptance criteria: Meet the requirements

- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY**PROCEDURE**

Solution A: Dissolve 5 mL of perchloric acid in 950 mL of water in a 1-L volumetric flask. Add 4 mL of 25% ammonia water, dilute with water to volume, and mix. Adjust with 25% ammonia water to a pH of 2.2 ± 0.2 .

Mobile phase: Acetonitrile and *Solution A* (23:77)

Standard solution: 0.1 mg/mL of USP Tramadol Hydrochloride RS in 0.1 N hydrochloric acid

Sample solution: Finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to 50 mg of tramadol hydrochloride, into a 100-mL volumetric flask. Add 70 mL of

0.1 N hydrochloric acid, sonicate for 5 min, and shake for 10 min. Dilute with 0.1 N hydrochloric acid to volume, and mix. Pass a portion of this solution through a suitable filter, discarding the first 20 mL of the filtrate. Transfer 10 mL of the clear filtrate into a 50-mL volumetric flask, dilute with 0.1 N hydrochloric acid to volume, and mix.

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC**Detector:** UV 273 nm**Column:** 3.9-mm \times 15-cm; packing L7**Flow rate:** 2 mL/min**Injection size:** 20 μ L**System suitability****Sample:** *Standard solution***Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of tramadol hydrochloride ($C_{16}H_{25}NO_2 \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of USP Tramadol Hydrochloride RS in the *Standard solution* (mg/mL)

C_u = nominal concentration of tramadol hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS**Change to read:****• DISSOLUTION (711)**

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm

Time: 30 min

Solution A, Mobile phase, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Standard solution: 0.055 mg/mL of USP Tramadol Hydrochloride RS in *Medium*

Sample solution: Withdraw 9 mL from the dissolution vessel, and pass through a Δ suitable ^{▲USP35} filter. Discard the first 3 mL of the filtrate.

Analysis**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of tramadol hydrochloride ($C_{16}H_{25}NO_2 \cdot HCl$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of USP Tramadol Hydrochloride RS in the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of tramadol hydrochloride ($C_{16}H_{25}NO_2 \cdot HCl$) is dissolved.

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements
Procedure for content uniformity

Solution A, Mobile phase, Standard solution, Chromatographic system, and System suitability:

Proceed as directed in the Assay.

Sample solution: Transfer 1 whole Tablet to a 100-mL volumetric flask, add 70 mL of 0.1 N hydrochloric acid, sonicate until the Tablet is completely disintegrated, and shake for 10 min. Dilute with 0.1 N hydrochloric acid to volume, and mix. Pass a portion of this solution through a suitable filter, discarding the first 20 mL of the filtrate. Transfer 10 mL of the clear filtrate into a 50-mL volumetric