

- BEYOND-USE DATE:** NMT 14 days after the date on which it was compounded when stored at controlled cold temperature
- USP REFERENCE STANDARDS (11)**
USP Pantoprazole Sodium RS

Pantoprazole Sodium

$C_{16}H_{14}F_2N_3NaO_4S \cdot 1.5H_2O$ 432.37
 1*H*-Benzimidazole, 5-(difluoromethoxy)-2-[(3,4-dimethoxy-2-pyridyl)methyl]sulfinyl]-, sodium salt, hydrate (2:3).
 5-(Difluoromethoxy)-2-[(3,4-dimethoxy-2-pyridyl)methyl]sulfinyl]benzimidazole, sodium salt, sesquihydrate [164579-32-2]

» Pantoprazole Sodium contains not less than 98.0 percent and not more than 102.0 percent of $C_{16}H_{14}F_2N_3NaO_4S$, calculated on the anhydrous basis.

Packaging and storage—Preserve in well-closed, light-resistant containers. Store at room temperature.

Labeling—If a test for *Related compounds* other than *Test 1* is used, then the labeling states the test with which the article complies.

USP Reference standards (11)—

USP Pantoprazole Sodium RS

USP Pantoprazole Related Compound A RS

5-(Difluoromethoxy)-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfonyl]-1*H*-benzimidazole.

$C_{16}H_{15}F_2N_3O_5S$ 399.37

USP Pantoprazole Related Compound B RS

5-(Difluoromethoxy)-2-[(3,4-dimethoxy-2-pyridinyl)methyl]thio]-1*H*-benzimidazole.

$C_{16}H_{15}F_2N_3O_3S$ 367.37

USP Pantoprazole Related Compound C RS

5-(Difluoromethoxy)-1*H*-benzimidazole-2-thiol.

$C_8H_6F_2N_2OS$ 216.21

USP Pantoprazole Related Compound D and F Mixture RS

A mixture of 5-(difluoromethoxy)-2-[(*RS*)-[(3,4-dimethoxy-2-yl)methyl]sulfinyl]-1-methyl-1*H*-benzimidazole and 6-(difluoromethoxy)-2-[(*RS*)-[(3,4-dimethoxy-2-yl)methyl]sulfinyl]-1-methyl-1*H*-benzimidazole.

$C_{17}H_{17}F_2N_3O_4S$ 398.40

USP Pantoprazole Related Compound E RS

A mixture of the stereoisomers of 6,6'-bis(difluoromethoxy)-2,2'-bis[[[(3,4-dimethoxy-2-yl)methyl]sulfinyl]-1*H*,1*H*-5,5'-bibenzimidazolyl].

$C_{32}H_{28}F_4N_6O_8S_2$ 764.74

Identification—

A: Infrared Absorption (197K).

B: The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

C: It meets the requirements of the pyroantimonate precipitate test for *Sodium* (191).

Water, Method I (921): between 5.0% and 8.0%.

Heavy metals, Method II (231): not more than 0.002%.

Related compounds—[NOTE—On the basis of the synthetic route, perform either *Test 1* or *Test 2*. *Test 2* is recommended when impurities C, D, E, and F are potential related compounds.]

TEST 1—[NOTE—Protect all solutions from light, and use amber autosampler vials and low-actinic glassware.]

Diluent, Mobile phase, System suitability preparation, and Chromatographic system—Proceed as directed in the *Assay*.

Standard solution—Transfer about 20 mg of USP Pantoprazole Sodium RS, accurately weighed, to a 50-mL volumetric flask, dissolve in 5 to 10 mL of a mixture of acetonitrile and water (1:1), and dilute with *Diluent* to volume. Further dilute with *Diluent* quantitatively, and stepwise if necessary, to obtain a solution having a known concentration of about 0.0004 mg per mL.

Test solution—Transfer about 20 mg of Pantoprazole Sodium, accurately weighed, to a 50-mL volumetric flask, dissolve in 5 to 10 mL of a mixture of acetonitrile and water (1:1), dilute with *Diluent* to volume, and mix.

Chromatographic system (see *Chromatography (621)*)—Prepare as directed in the *Assay*. Chromatograph the *System suitability preparation*, and record the peak responses as directed for *Procedure*. Identify the components on the basis of their relative retention times (*Table 1*): the resolution, *R*, between the pantoprazole related compound A and pantoprazole peaks is not less than 10.0.

Table 1

Name	Relative Retention Time	Limit (%)
Pantoprazole related compound A ¹	0.52	0.20
Pantoprazole sodium	1.0	N/A
Pantoprazole related compound B ²	1.7	0.15
Any other individual impurity	—	0.10
Total impurities	—	0.5

¹ 5-(Difluoromethoxy)-2-[(3,4-dimethoxy-2-pyridyl)methyl]sulfonyl]-1*H*-benzimidazole.

² 5-(Difluoromethoxy)-2-[(3,4-dimethoxy-2-pyridyl)methyl]thio]-1*H*-benzimidazole.

Procedure—Separately inject equal volumes (about 20 μ L) of the *Standard solution* and the *Test solution* into the chromatograph, record the chromatograms, and measure the peak responses. Calculate the percentage of each impurity in the portion of Pantoprazole Sodium taken by the formula:

$$100(C_s / C_t)(r_i / r_s)$$

in which C_s and C_t are the concentrations, in mg per mL, of pantoprazole sodium in the *Standard solution* and the *Test solution*, respectively; r_i is the peak response of each impurity obtained from the *Test solution*; and r_s is the pantoprazole peak response obtained from the *Standard solution*. The reporting level for impurities is 0.05%.

TEST 2—

Diluent—Prepare a mixture of acetonitrile and 0.001 N sodium hydroxide solution (50:50).

Standard solution—Dissolve an accurately weighed quantity of USP Pantoprazole Sodium RS in *Diluent*, and dilute quantitatively to obtain a solution having a known concentration of about 0.03 mg per mL.

Test solution—Prepare a solution of Pantoprazole Sodium in *Diluent* having a known concentration of about 0.46 mg per mL.

System suitability solution—Dissolve suitable amounts of USP Pantoprazole Sodium RS, USP Pantoprazole Related Compound A RS, USP Pantoprazole Related Compound B RS, USP Pantoprazole Related Compound C RS, USP Pantoprazole Related Compound D and F Mixture RS, and USP Pantoprazole Related Compound E RS in *Diluent* to obtain a solution containing about 0.46 mg of pantoprazole sodium per mL and about 1.3 μ g each of related compounds A, B, C, and E per mL, and about 1.3 μ g of the D and F mixture per mL.

Solution A—Prepare a solution of dibasic potassium phosphate (1.74 g/L) adjusted with a solution of phosphoric acid (330 g/L) to a pH of 7.00 ± 0.05.

Solution B—Use acetonitrile.

Mobile phase—Use variable mixtures of **Solution A** and **Solution B** as directed below for **Chromatographic system**. Make adjustments as necessary (see **System Suitability** under **Chromatography** (621)).

Chromatographic system (see **Chromatography** (621))—The liquid chromatograph is equipped with either a programmable variable wavelength detector or two separate detectors capable of monitoring at 290 nm and at 305 nm, and a 4-mm × 12.5-cm column that contains 5-μm packing L1. The column temperature is maintained at 40°. The flow rate is about 1.0 mL per minute. The chromatograph is programmed as follows.

Time (minutes)	Solution A (%)	Solution B (%)	Elution
0–40	80→20	20→80	linear gradient
40–45	20→80	80→20	linear gradient
45–55	80	20	re-equilibration

Chromatograph the **System suitability solution**, and record the peak responses at 290 nm as directed for **Procedure**. Identify the components based on relative retention times (*Table 2*): the resolution, *R*, between pantoprazole related compound E and pantoprazole related compounds D and F is not less than 1.5. Chromatograph the **Standard solution** at 290 nm, and record the peak responses as directed for **Procedure**: the tailing factor is not more than 2; and the relative standard deviation for replicate injections is not more than 5.0%.

Procedure—Separately inject equal volumes (about 20 μL) of the **Standard solution** and the **Test solution** into the chromatograph, record the chromatograms at 290 nm and 305 nm, and measure the responses for the major peaks. [NOTE—Pantoprazole related compound C is monitored using a wavelength of 305 nm, and all other compounds are monitored at 290 nm.] Calculate the percentage of each impurity in the portion of Pantoprazole Sodium taken by the formula:

$$100 (1 / F)(C_s / C_t)(r_t / r_s)$$

in which *C_s* is the concentration, in mg per mL, of pantoprazole sodium in the **Standard solution**; *C_t* is the concentration, in mg per mL of Pantoprazole Sodium in the **Test solution**; *F* is the response factor of an individual pantoprazole related compound relative to the response of pantoprazole sodium (*Table 2*); *r_t* is the peak response of each impurity obtained from the **Test solution**; and *r_s* is the pantoprazole peak response obtained from the **Standard solution**. The reporting level for impurities is 0.05%.

Table 2

Impurity Name	Relative Retention Time	Relative Response Factor (F)	Limit (%)
Related compound A	0.9	1.0	0.20
Related compound B	1.5	1.0	0.15
Related compound C ¹	0.6	3.3	0.10 ²
Related compounds D ³ and F ⁴	1.2	1.0	0.20 ⁴
Related compound E ⁶	1.3	1.0	0.10

¹ 5-(Difluoromethoxy)-1*H*-benzimidazole-2-thiol.

² At 305 nm.

³ 5-(Difluoromethoxy)-2-[(*RS*)-[(3,4-dimethoxypyridin-2-yl)methyl]sulfinyl]-1-methyl-1*H*-benzimidazole.

⁴ Impurities D and F are not fully resolved and should be integrated together.

⁵ 6-(Difluoromethoxy)-2-[(*RS*)-[(3,4-dimethoxypyridin-2-yl)methyl]sulfinyl]-1-methyl-1*H*-benzimidazole.

⁶ Mixture of the stereoisomers of 6,6'-bis(difluoromethoxy)-2,2'-bis[(3,4-dimethoxypyridin-2-yl)methyl]sulfinyl]-1*H*,1'*H*-5,5'-bibenzimidazolyl.

Table 2 (Continued)

Impurity Name	Relative Retention Time	Relative Response Factor (F)	Limit (%)
Any other individual impurity	—	—	0.10
Total impurities	—	—	0.5

¹ 5-(Difluoromethoxy)-1*H*-benzimidazole-2-thiol.

² At 305 nm.

³ 5-(Difluoromethoxy)-2-[(*RS*)-[(3,4-dimethoxypyridin-2-yl)methyl]sulfinyl]-1-methyl-1*H*-benzimidazole.

⁴ Impurities D and F are not fully resolved and should be integrated together.

⁵ 6-(Difluoromethoxy)-2-[(*RS*)-[(3,4-dimethoxypyridin-2-yl)methyl]sulfinyl]-1-methyl-1*H*-benzimidazole.

⁶ Mixture of the stereoisomers of 6,6'-bis(difluoromethoxy)-2,2'-bis[(3,4-dimethoxypyridin-2-yl)methyl]sulfinyl]-1*H*,1'*H*-5,5'-bibenzimidazolyl.

Assay—[NOTE—Protect all solutions from light, and use amber autosampler vials and low-actinic glassware.]

Ammonium phosphate buffer—Dissolve 1.32 g of dibasic ammonium phosphate in 1000 mL of water. Adjust with phosphoric acid to a pH of 7.5.

Acetonitrile–methanol mixture—Prepare a mixture of acetonitrile and methanol (7:3).

Solution A—Use a filtered and degassed mixture of **Ammonium phosphate buffer** and **Acetonitrile–methanol mixture** (85:15).

Solution B—Use **Acetonitrile–methanol mixture**.

Diluent—Transfer 25 mL of ammonium hydroxide to a suitable container, and dilute with water to 500 mL.

Mobile phase—Use variable mixtures of **Solution A** and **Solution B** as directed for **Chromatographic system**. Make adjustments if necessary (see **System Suitability** under **Chromatography** (621)).

System suitability preparation—Dissolve suitable amounts of USP Pantoprazole Sodium RS, USP Pantoprazole Related Compound A RS, and USP Pantoprazole Related Compound B RS in a mixture of acetonitrile and water (1:1) to obtain a solution having about 0.5 mg of each component per mL. Transfer 1 mL of this solution to a 100-mL volumetric flask, and dilute with **Diluent** to volume.

Standard preparation—Transfer about 20 mg of USP Pantoprazole Sodium RS, accurately weighed, to a 50-mL volumetric flask, dissolve in 5 to 10 mL of a mixture of acetonitrile and water (1:1), and dilute with **Diluent** to volume. Further dilute with **Diluent** quantitatively, and stepwise if necessary, to obtain a solution having a known concentration of about 0.06 mg per mL.

Assay preparation—Transfer about 20 mg of Pantoprazole Sodium, accurately weighed, to a 50-mL volumetric flask, dissolve in 5 to 10 mL of a mixture of acetonitrile and water (1:1), and dilute with **Diluent** to volume. Further dilute with **Diluent** quantitatively, and stepwise if necessary, to obtain a solution having a known concentration of about 0.06 mg per mL.

Chromatographic system (see **Chromatography** (621))—The liquid chromatograph is equipped with a 285-nm detector and 3.9-mm × 15-cm column that contains 4-μm packing L1. The flow rate is about 1 mL per minute. The column temperature is maintained at 30°, and the autosampler temperature is maintained at 4°. The chromatograph is programmed as follows:

Time (minutes)	Solution A (%)	Solution B (%)	Elution
0–10	86	14	isocratic
10–35	86→42	14→58	linear gradient
35–36	42→86	58→14	linear gradient
36–46	86	14	re-equilibration

Chromatograph the **System suitability preparation**, and record the peak responses as directed for **Procedure**. Identify the com-

ponents based on their relative retention times (*Table 1*): the resolution, *R*, between the pantoprazole related compound A and pantoprazole peaks is not less than 10.0. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 20 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the percentage of $C_{16}H_{14}F_2N_3NaO_4S$ in the portion of Pantoprazole Sodium taken by the formula:

$$100(C_s / C_u)(r_u / r_s)$$

in which C_s and C_u are the concentrations, in mg per mL, of pantoprazole sodium in the *Standard preparation* and the *Assay preparation*, respectively; and r_u and r_s are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Pantoprazole Sodium Delayed-Release Tablets

DEFINITION

Pantoprazole Sodium Delayed-Release Tablets contain an amount of Pantoprazole Sodium equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of pantoprazole ($C_{16}H_{15}F_2N_3O_4S$).

IDENTIFICATION

- The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Solution A: Dissolve 3.85 g of ammonium acetate and 1.1 g of tetrabutylammonium hydrogen sulfate in 1 L of water, and adjust with ammonium hydroxide solution diluted 1:1 with water to a pH of 7.9.

Diluent: Mixture of acetonitrile and 0.02 N sodium hydroxide (1:1).

Mobile phase: Prepare a mixture of acetonitrile and *Solution A* (35:65).

Standard solution: Transfer a weighed quantity of USP Pantoprazole Sodium RS to a suitable volumetric flask, add 0.02 N sodium hydroxide to about 60% of the final volume, sonicate for 5 min to dissolve, add about 2% of acetonitrile, and dilute with 0.02 N sodium hydroxide to volume to obtain a solution having a known concentration of about 0.2 mg/mL of pantoprazole sodium.

System suitability solution: Prepare a solution in 0.02 N sodium hydroxide, using sonication if necessary, containing about 0.2 mg/mL of pantoprazole sodium and about 0.0004 mg/mL each of USP Pantoprazole Related Compound A RS and USP Pantoprazole Related Compound B RS.

Sample solution: Transfer 5 Tablets into a suitable volumetric flask. [NOTE—Use 50- or 100-mL volumetric flasks for Tablets containing 20 or 40 mg of pantoprazole per Tablet, respectively.] Add *Diluent* to about 60% of the final volume, shake mechanically for about 60 min, and dilute with *Diluent* to volume. Pass through a suitable filter, and dilute the

filtrate with 0.02 N sodium hydroxide to obtain a solution having a known concentration of about 0.2 mg/mL of pantoprazole, based on the label claim.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 290 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1 mL/min

Injection size: 20 μ L

System suitability

Samples: *Standard solution* and *System suitability solution*

Suitability requirements

Resolution: NLT 3 between pantoprazole and pantoprazole related compound A, *System suitability solution*

Tailing factor: NMT 2.0, *System suitability solution*

Relative standard deviation: NMT 2.0% for replicate injections, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of $C_{16}H_{15}F_2N_3O_4S$ in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of USP Pantoprazole Sodium RS in the *Standard solution* (mg/mL)

C_u = nominal concentration of pantoprazole in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of pantoprazole, 383.37

M_{r2} = molecular weight of pantoprazole sodium, 405.35

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

• DISSOLUTION (711)

Test 1: Proceed as directed for *Apparatus 1* and *Apparatus 2*, *Delayed-Release Dosage Forms, Method B, Procedure*.

Acid stage

Acid stage medium: 0.1 N hydrochloric acid; 1000 mL

Apparatus 2: 75 rpm

Time: 120 min

Determine the amount of pantoprazole dissolved in the *Acid stage* using the following procedure.

Sample solution: After 120 min, withdraw an aliquot, pass through a suitable filter of 0.45- μ m pore size, and immediately dilute a portion of the filtrate by a factor of 2 with 0.5 N sodium hydroxide. Transfer the Tablets to the vessels containing the *Buffer stage medium*.

Diluent: Prepare a mixture of pH 6.8 phosphate buffer and 0.5 N sodium hydroxide (1:1).

Mobile phase: Acetonitrile, triethylamine, and water (40:1:60). Adjust with phosphoric acid to a pH of 7.0 \pm 0.05.

Standard stock solution: Transfer about 20 mg of USP Pantoprazole Sodium RS to a 50-mL volumetric flask. Add about 30 mL of 0.02 N sodium hydroxide, and sonicate until dissolved. Add 2 mL of acetonitrile, and dilute with 0.02 N sodium hydroxide to volume.

Standard solution: Transfer 1.0 mL of the *Standard stock solution* to a 20-mL volumetric flask, and dilute with *Diluent* to volume.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)