

r_u	= peak response from the <i>Sample solution</i>
r_s	= peak response from the <i>Standard solution</i>
C_s	= concentration of USP Mefloquine Hydrochloride RS in the <i>Standard solution</i> (mg/mL)
C_u	= nominal concentration of Mefloquine Hydrochloride in the <i>Sample solution</i> (mg/mL)
Acceptance criteria:	90.0%–110.0%

PERFORMANCE TESTS**• DISSOLUTION (711)**

Medium: 0.1 N Hydrochloric acid; 900 mL

Apparatus 2: 50 rpm

Time: 30 min

Standard stock solution: 0.2 mg/mL of USP Mefloquine Hydrochloride RS in *Medium*. [NOTE—Use 5% of the flask volume of methanol to facilitate dissolution before solubilization with *Medium*.]

Standard solution: 0.04 mg/mL of USP Mefloquine Hydrochloride RS in *Medium* from the *Standard stock solution*

Sample solution: Dilute a portion of the solution under test with *Medium* (1:5), and pass a portion through a suitable filter of 0.8-μm pore size.

Spectrometric conditions

(See *Spectrophotometry and Light-Scattering* (851).)

Mode: UV absorption spectroscopy

Analytical wavelength: UV 285 nm

Cell length: 1 cm

Blank: *Medium*

Analysis

Calculate the percentage of $C_{17}H_{16}F_6N_2O \cdot HCl$ dissolved:

$$\text{Result} = (A_u/A_s) \times (C_s/L) \times D \times V \times 100$$

A_u = absorbance of mefloquine from the *Sample solution*

A_s = absorbance of mefloquine from the *Standard solution*

C_s = concentration of USP Mefloquine Hydrochloride RS in the *Standard solution* (mg/mL)

D = dilution factor of the *Sample solution*

L = label claim (mg/Tablet)

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of $C_{17}H_{16}F_6N_2O \cdot HCl$ is dissolved.

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements**IMPURITIES****Organic Impurities****• PROCEDURE**

Buffer, Diluent, Mobile phase, Standard solution, Sensitivity solution, Sample stock solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of mefloquine hydrochloride from the *Standard solution*

C_s = concentration of USP Mefloquine Hydrochloride RS in the *Standard solution* (mg/mL)

C_u = nominal concentration of Mefloquine Hydrochloride in the *Sample solution* (mg/mL)

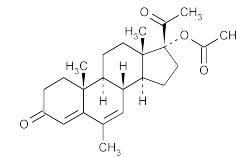
Acceptance criteria

Individual impurities: See *Impurity Table 1*.

[NOTE—Do not include the *threo* isomer, a process impurity monitored in the drug substance, in the calculation of total impurities. Disregard any peak less than 0.05%.]

Total impurities: NMT 0.50%

Impurity Table 1


Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Specified (unidentified)	0.67	0.15
Specified (unidentified)	0.70	0.15
<i>threo</i> -Mefloquine (DL- <i>threo</i> - α -2-piperidyl-2,8-bis(trifluoromethyl)-4-quinolinemethanol)	0.75	—
Specified (unidentified)	0.84	0.25
Mefloquine hydrochloride	1.0	—
Any other unknown individual impurity	—	0.15

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers. Store at controlled room temperature.

• USP REFERENCE STANDARDS (11)

USP Mefloquine Hydrochloride RS

Megestrol Acetate

$C_{24}H_{32}O_4$ 384.51

Pregna-4,6-diene-3,20-dione, 17-(acetoxy)-6-methyl-17-Hydroxy-6-methylpregna-4,6-diene-3,20-dione acetate [595-33-5].

» Megestrol Acetate contains not less than 97.0 percent and not more than 103.0 percent of $C_{24}H_{32}O_4$, calculated on the anhydrous basis.

Packaging and storage—Preserve in well-closed containers, protected from light.

USP Reference standards (11)—

USP Megestrol Acetate RS

Completeness of solution (641): meets the requirements, 500 mg being dissolved in 10 mL of acetone.

Identification, Infrared Absorption (197K).

Melting range (741): between 213° and 220°, but the range between beginning and end of melting does not exceed 3°.

Specific rotation (781S): between +8.8° and +12.0° ($t = 20^\circ$).

Test solution: 20 mg per mL, in chloroform.

Water, Method I (921): not more than 0.5%.

Residue on ignition (281): not more than 0.2%, a platinum dish being used, with ignition at $600 \pm 25^\circ$.

Heavy metals, Method II (231): not more than 0.002%.

Assay—

Mobile phase—Prepare a solution of acetonitrile and water (55:45), mix, and degas. The acetonitrile concentration may be varied slightly to meet system suitability test requirements and to provide a suitable elution time.

Solvent mixture—Mix 60 volumes of water and 40 volumes of acetonitrile.

Internal standard solution—Transfer about 80 mg of propylparaben to a 100-mL volumetric flask, dissolve in acetonitrile, add acetonitrile to volume, and mix.

Standard preparation—Using an accurately weighed quantity of USP Megestrol Acetate RS, prepare a solution in acetonitrile containing about 1 mg per mL. Transfer 4.0 mL of this solution and 5.0 mL of *Internal standard solution* to a 50-mL volumetric flask, dilute with *Solvent mixture* to volume, and mix. The *Standard preparation* has a known concentration of about 80 µg of megestrol acetate per mL.

Assay preparation—Transfer about 100 mg of Megestrol Acetate, accurately weighed, to a 100-mL volumetric flask. Dissolve in acetonitrile, add acetonitrile to volume, and mix. Transfer 4.0 mL of this solution and 5.0 mL of *Internal standard solution* to a 50-mL volumetric flask, dilute with *Solvent mixture* to volume, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with an UV detector that monitors absorption at 280 nm and 3.9-mm × 30-cm column containing packing L1. The flow rate is about 1 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the relative retention times are about 0.4 for propylparaben and 1.0 for megestrol acetate; the resolution factor, *R* (see *Chromatography* (621)), between the peaks for propylparaben and megestrol acetate is not less than 8.0; and the relative standard deviation of the peak response ratio, *R_s*, for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 25 µL) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the peak responses of the major peaks. Calculate the quantity, in mg, of C₂₄H₃₂O₄ in the portion of Megestrol Acetate taken by the formula:

$$1.25C(R_U / R_S)$$

in which *C* is the concentration, in µg per mL, of USP Megestrol Acetate RS in the *Standard preparation*; and *R_U* and *R_S* are the ratios of the peak responses of megestrol acetate and propylparaben obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Megestrol Acetate Oral Suspension

DEFINITION

Megestrol Acetate Oral Suspension contains NLT 90.0% and NMT 110.0% of the labeled amount of megestrol acetate (C₂₄H₃₂O₄).

IDENTIFICATION

- **THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST** (201)

Standard solution: 4.0 mg/mL of USP Megestrol Acetate RS in chloroform

Sample solution: Transfer Oral Suspension, equivalent to 160 mg of megestrol acetate, to a separatory funnel, add 50 mL of water and 40 mL of chloroform, and shake. Allow the phases to separate, and discard the aqueous layer.

Developing solvent system: Chloroform and ethyl acetate (4:1)

ASSAY

- **PROCEDURE**

Mobile phase: Acetonitrile and water (11:9)

Standard solution: 80 µg/mL of USP Megestrol Acetate RS in *Mobile phase*

Sample solution: A volume of Oral Suspension diluted with *Mobile phase* to obtain nominally 80 µg/mL of megestrol acetate

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 280 nm

Column: 3.9-mm × 30-cm; packing L1

Flow rate: 1.5 mL/min

Injection size: 25 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 2500 theoretical plates

Tailing factor: NMT 1.4

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of C₂₄H₃₂O₄ in the portion of Oral Suspension taken:

$$\text{Result} = (R_U / R_S) \times (C_S / C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of USP Megestrol Acetate RS in the *Standard solution* (µg/mL)

C_U = nominal concentration of the *Sample solution* (µg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- **DISSOLUTION** (711)

Test 1

Medium: 0.5% sodium lauryl sulfate in water; 900 mL

Apparatus 2: 25 rpm

Time: 30 min

Detector: UV 292 nm

Standard solution: 45 mg of USP Megestrol Acetate RS in a 250-mL volumetric flask. Add 12 mL of methanol, and place the flask in a warm water bath until the solid is dissolved. Dilute with *Medium* to volume. The final concentration is 180 µg/mL of megestrol acetate. Dilute with *Medium*, if necessary.

Sample solution: Transfer to the surface of the *Medium* in the dissolution vessel an accurately measured volume of Oral Suspension, freshly mixed and free from air bubbles, equivalent to 160 mg of megestrol acetate. At the sampling time, withdraw a volume of the solution under test and pass through a suitable filter with 0.45-µm pore size. Dilute with *Medium*, if necessary.

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of C₂₄H₃₂O₄ released:

$$\text{Result} = (A_U / A_S) \times (C_S / V) \times V_D \times (100 / L)$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

V = volume of Oral Suspension taken

V_D = volume of *Medium*, 900 mL

L = label claim (mg/mL)

Tolerances: NLT 80% (Q) of the labeled amount of C₂₄H₃₂O₄ is dissolved.

Test 2: If the product complies with this test, the labeling indicates that it meets *USP Dissolution Test 2*.

Medium: 0.5% sodium lauryl sulfate in water; 900 mL

Apparatus 2: 25 rpm

Time: 30 min

Detector: UV 292 nm, using 0.5-cm pathlength cuvettes

Standard solution: 45 mg of USP Megestrol Acetate RS in a 250-mL volumetric flask. Add 5 mL of methanol. Dilute with *Medium* to volume. Transfer 10 mL of this solution to a 100-mL volumetric flask, and dilute with *Medium* to volume. The final concentration is 18 µg/mL.

Sample solution: [NOTE—Use a separate syringe for each vessel.] Withdraw more than 10 mL of the Oral Suspension,