

mixer to effect dissolution. Dilute with *Solution A* to volume, and mix. Filter, and use the filtrate as the *Test solution* immediately, or refrigerate and use within 24 hours.

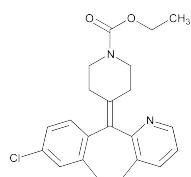
Procedure—Proceed as directed for *Procedure* in the test for *Related compounds* under *Loracarbef*, except to omit the injection of the *Phenylglycine solution*. Calculate the percentage of each related compound in the Suspension taken by the formula:

$$100(C/Y)(r_i / r_s)$$

in which *C* is the concentration, in mg per mL, of USP *Loracarbef RS* in the *Standard solution*; *Y* is the concentration, in mg per mL, of *loracarbef* in the *Test solution*; *r_i* is the response of any related compound obtained from the *Test solution*; and *r_s* is the *loracarbef* response obtained from the *Standard solution*; not more than 1.0% of any individual related compound is found, and the sum of all related compounds is not more than 4.0%.

Assay—

Mobile phase, Standard preparation, Resolution solution, and Chromatographic system—Proceed as directed in the *Assay* under *Loracarbef*.


Assay preparation—Constitute 1 container of *Loracarbef* for Oral Suspension as directed in the labeling. Transfer an accurately measured volume of *Loracarbef* for Oral Suspension, freshly mixed and free from air bubbles, equivalent to about 200 mg of *Loracarbef*, to a 100-mL volumetric flask, dilute with *Mobile phase* to volume, and mix. Transfer 10.0 mL of this solution to a second 100-mL volumetric flask, dilute with *Mobile phase* to volume, and mix. Pass a portion of this solution through a filter having a porosity of 0.5 μ m or finer, and use the filtrate as the *Assay preparation*.

Procedure—Proceed as directed for *Procedure* in the *Assay* under *Loracarbef*. Calculate the quantity, in mg, of anhydrous *loracarbef* ($C_{16}H_{16}ClN_3O_4$) in each mL of the *Loracarbef* for Oral Suspension taken by the formula:

$$(CP / V)(r_u / r_s)$$

in which *C* is the concentration, in mg per mL, of USP *Loracarbef RS* in the *Standard preparation*; *P* is the specified potency, in μ g of anhydrous *loracarbef* ($C_{16}H_{16}ClN_3O_4$) per mg, of USP *Loracarbef RS*; *V* is the volume, in mL, of *Loracarbef* for Oral Suspension taken to prepare the *Assay preparation*; and *r_u* and *r_s* are the *loracarbef* peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Loratadine

$C_{22}H_{23}ClN_2O_2$ 382.88

1-Piperidinecarboxylic acid, 4-(8-chloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)-, ethyl ester.

Ethyl 4-(8-chloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)-1-piperidinecarboxylate [79794-75-5].

» Loratadine contains not less than 98.5 percent and not more than 101.0 percent of $C_{22}H_{23}ClN_2O_2$, calculated on the dried basis.

Packaging and storage—Preserve in well-closed containers, and store between 2° and 30°.

Labeling—If a test for *Related compounds* other than *Test 1* is used, then the labeling states with which *Related compounds* test the article complies.

USP Reference standards (11)—

USP Loratadine RS

USP Loratadine Related Compound A RS
8-Chloro-6,11-dihydro-11(4-piperidylidene)-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridine.
 $C_{19}H_{19}ClN_2$ 310.83

USP Loratadine Related Compound B RS

8-Chloro-6,11-dihydro-11(*N*-methyl-4-piperinylidene)-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridine.
 $C_{20}H_{21}ClN_2$ 324.88

Identification—

A: Infrared Absorption (197M).

B: The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

Melting range (741): between 132° and 137°.

Loss on drying (731)—Dry it at 100° to constant weight: it loses not more than 0.5% of its weight.

Residue on ignition (281): not more than 0.1%.

Heavy metals, Method II (231): 0.001%.

Related compounds—

NOTE—On the basis of the synthetic route, perform either *Test 1* or *Test 2*. *Test 2* is recommended if 4,8-dichloro-6,11-dihydro-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-one is a potential related compound.

TEST 1—

Mobile phase and Diluent—Prepare as directed in the *Assay*.

Standard stock solution—Prepare as directed for *Standard preparation* in the *Assay*.

Standard solution—Pipet 5.0 mL of *Standard stock solution* into a 100-mL volumetric flask, dilute with *Diluent* to volume, and mix. Dilute quantitatively, and stepwise if necessary, with *Diluent* to obtain a solution having a known concentration of about 0.8 μ g per mL.

Test solution—Use the *Assay preparation*.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 254-nm detector and a 4.6-mm \times 15-cm column that contains 5- μ m packing L7. The column temperature is maintained between 25° and 35°. The flow rate is about 1 mL per minute. Chromatograph the *Test solution*, and record the peak areas as directed for *Procedure*: the relative retention times are about 0.79 for 4-(8-chloro-11-fluoro-6,11-dihydro-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-yl)-1-piperidinecarboxylate ethyl and 1.0 for loratadine. Chromatograph the *Standard solution*, and record the peak area of the main peak as directed for *Procedure*: the relative standard deviation for replicate injections is not more than 4.0%.

Procedure—Separately inject equal volumes (about 50 μ L) of the *Test solution* and the *Standard solution* into the chromatograph, record the chromatograms, and measure all the peak areas in the *Test solution* and the area of the main peak in the *Standard solution*. Calculate the percentage of each impurity in the portion of *Loratadine* taken by the formula:

$$10,000(C/F)(r_i / r_s)/W$$

in which *C* is the concentration, in mg per mL, of USP *Loratadine RS* in the *Standard solution*; *F* is the relative response factor for each impurity, if known (*F* is 0.25 for 4-(8-chloro-11-fluoro-6,11-dihydro-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-yl)-1-piperidinecarboxylate ethyl); *r_i* is the peak area response for each impurity in the *Test solution*; *r_s* is the peak area response of *loratadine* in the *Standard solution*; and *W* is the quantity, in mg, of *Loratadine* taken to prepare the *Test solution*: not more than 0.2% of 4-(8-chloro-11-fluoro-6,11-dihydro-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-yl)-1-piperidinecarboxylate ethyl is found; not more than 0.1% of any other

Related Compound	Relative Retention Time with respect to Loratadine	Relative Response Factor (<i>F</i>) with respect to Loratadine
Loratadine related compound A	0.50	1.00
Loratadine related compound B	0.53	0.89
8-Chloro-6,11-dihydro-5 <i>H</i> -benzo[5,6]cyclohepta[1,2- <i>b</i>]pyridin-11-one	0.70	0.60
8-Chloro-6,11-dihydro-11-[<i>N</i> -methyl-4-piperidinyl]11-hydroxy-5 <i>H</i> -benzo[5,6]cyclohepta[1,2- <i>b</i>]pyridine	0.75	0.46
4,8-Dichloro-6,11-dihydro-5 <i>H</i> -benzo[5,6]cyclohepta[1,2- <i>b</i>]pyridin-11-one	1.23	0.92
8-Chloro-6,11-dihydro-11-[<i>N</i> -ethoxy carbonyl-4-piperidinyl]-11-hydroxy-5 <i>H</i> -benzo[5,6]cyclohepta[1,2- <i>b</i>]pyridine	1.60	0.42
4,8-Dichloro-6,11-dihydro-11-[<i>N</i> -ethoxy carbonyl-4-piperidylidene]-5 <i>H</i> -benzo[5,6]cyclohepta[1,2- <i>b</i>]pyridine	1.83	1.08
Loratadine	1.00	1.00

individual impurity is found; and not more than 0.3% of total impurities is found.

TEST 2—

Solution A—Dissolve 0.96 g of 1-pentanesulfonic acid sodium salt in 900 mL of water. Adjust with phosphoric acid solution (1 in 10) to a pH of 3.00 ± 0.05 , dilute with water to 1 L, filter, and degas.

Solution B—Use acetonitrile.

Mobile phase—Use variable mixtures of *Solution A* and *Solution B* as directed for *Chromatographic system*. Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Standard solution—Dissolve accurately weighed quantities of USP Loratadine RS, USP Loratadine Related Compound A RS, and USP Loratadine Related Compound B RS in methanol, and dilute quantitatively, and stepwise if necessary, with methanol to obtain a solution containing about 0.1 mg of each compound per mL. Transfer 1.0 mL of this solution to a 10-mL volumetric flask, add 2 mL of *Solution A*, dilute with methanol to volume, and mix to obtain a solution having a known concentration of about 0.01 mg of each per mL.

Test solution—Transfer about 100 mg of Loratadine, accurately weighed, to a 10-mL volumetric flask, and dissolve in 2 mL of methanol. Add 2 mL of *Solution A*, then dilute with methanol to volume, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 254-nm detector and a 4.6-mm \times 25-cm column containing 5- μ m packing L1. The flow rate is about 1.2 mL per minute. The chromatograph is programmed as follows.

Time (min)	<i>Solution A</i> (%)	<i>Solution B</i> (%)	Elution
0	75	25	isocratic
0–20	75–50	25–50	linear gradient
20–30	50–40	50–60	linear gradient
30–35	40–30	60–70	linear gradient
35–45	30	70	isocratic
45–50	30–75	70–25	step gradient

Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*: the relative retention times and response factors are as follows in the table below. The resolution, *R*, between loratadine related compound A and loratadine related compound B is not less than 1.5; and the relative standard deviation of the loratadine peak response from replicate injections is not more than 10%.

Procedure—Inject a volume (about 20 μ L) of the *Test solution* into the chromatograph, record the chromatogram, and meas-

ure the peak responses. Calculate the percentage of each impurity in the portion of Loratadine taken by the formula:

$$(100/F)(C_S / C_T)(r_i / r_S)$$

in which C_S is the concentration, in mg per mL, of USP Loratadine RS in the *Standard solution*; C_T is the concentration, in mg per mL of the *Test solution*; F is the relative response factor as indicated in the table ($F = 1.0$ for unknown impurities); r_i is the peak area response for the individual impurity in the *Test solution*; and r_S is the peak response for loratadine in the *Standard solution*; not more than 0.1% of loratadine related compound A is found; not more than 0.1% of loratadine related compound B is found; less than 0.1% for each individual unknown impurity is found; and not more than 0.3% of total impurities is found.

Assay—

0.01 M Dibasic potassium phosphate—Transfer about 1.74 g of anhydrous dibasic potassium phosphate to a 1000-mL volumetric flask, dissolve in and dilute with water to volume, and mix.

0.6 M Dibasic potassium phosphate—Transfer 105 g of anhydrous dibasic potassium phosphate to a 1000-mL volumetric flask, dissolve in and dilute with water to volume, and mix.

Mobile phase—Prepare a filtered and degassed mixture of *0.01 M Dibasic potassium phosphate*, methanol, and acetonitrile (7:6:6). Adjust with 10% phosphoric acid solution to an apparent pH of 7.2. Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

0.05 N Hydrochloric acid—Transfer 500 mL of water to a 1000-mL volumetric flask, add 83 mL of hydrochloric acid, dilute with water to volume, and mix. Transfer 50 mL of this solution into a 1000-mL volumetric flask, dilute with water to volume, and mix.

Diluent—Transfer 400 mL of *0.05 N Hydrochloric acid* and 80 mL of *0.6 M Dibasic potassium phosphate* to a 1000-mL volumetric flask, dilute with a mixture of methanol and acetonitrile (1:1) to volume, and mix.

Standard preparation—Dissolve an accurately weighed quantity of USP Loratadine RS in *Diluent*, and dilute quantitatively, and stepwise if necessary, to obtain a solution having a known concentration of about 0.4 mg per mL.

Assay preparation—Transfer about 40 mg of Loratadine, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Diluent* to volume, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 254-nm detector and a 4.6-mm \times 15-cm column that contains 5- μ m packing L7. The flow rate is about 1 mL per minute. The column temperature is maintained between 25° and 35°. Chromatograph the *Standard preparation*, and record the peak area responses as directed for *Procedure*: the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 15 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the areas for the major peaks. Calculate the quantity, in mg, of $C_{22}H_{23}ClN_2O_2$ in the portion of Loratadine taken by the formula:

$$100C(r_U / r_S)$$

in which C is the concentration, in mg per mL, of USP Loratadine RS in the *Standard preparation*; and r_U and r_S are the peak area responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

$$100C(r_U / r_S)$$

Loratadine Oral Solution

DEFINITION

Loratadine Oral Solution contains NLT 94.0% and NMT 105.0% of the labeled amount of loratadine ($C_{22}H_{23}ClN_2O_2$).

IDENTIFICATION

- **A. THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST (201)**

Standard solution: 5 mg/mL of USP Loratadine RS in dichloromethane

Sample solution: Place a volume of Oral Solution, equivalent to 10 mg of loratadine, in a centrifuge tube. Add 10 mL of 0.2 N sodium hydroxide and 2.0 mL of dichloromethane. Rotate the centrifuge tube for 10 min, centrifuge, and discard the aqueous phase.

Developing solvent system: Ethyl ether and diethylamine (40:1), in a paper-lined tank

Acceptance criteria: Meets the requirements

- **B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.**

ASSAY

- **PROCEDURE**

Buffer: 6.8 g/L of monobasic potassium phosphate in water, adjusted with phosphoric acid to a pH of 3.0 ± 0.1

Mobile phase: Acetonitrile and **Buffer** (3:7)

Diluent: Acetonitrile and water (3:7)

Internal standard solution: 0.3 mg/mL of butylparaben in **Diluent**

Standard stock solution: 1.0 mg/mL of USP Loratadine RS in acetonitrile

Standard solution: Transfer 5.0 mL of *Internal standard solution*, 5.0 mL of *Standard stock solution*, and 12 mL of water to a 50-mL volumetric flask. Dilute with *Diluent* to volume.

Sample solution: Transfer a portion of Oral Solution, nominally equivalent to 5 mg of loratadine, to a 50-mL volumetric flask. Pipet 5.0 mL of *Internal standard solution* into the flask, and dilute with *Diluent* to volume.

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC

Detector: UV 254 nm

Column: 4-mm \times 30-cm; 10- μ m packing L11

Column temperature: 20°–30°

Flow rate: 2 mL/min

Injection size: 10 μ L

System suitability

Sample: *Standard solution*

[NOTE—The relative retention times for butylparaben and loratadine are about 0.78 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.9 between loratadine and butylparaben

Tailing factor: NMT 1.6 for the loratadine and butylparaben peaks

Relative standard deviation: NMT 2%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of loratadine ($C_{22}H_{23}ClN_2O_2$) in the portion of Oral Solution taken:

$$\text{Result} = (R_U/R_S) \times (C_S/C_U) \times 100$$

R_U = peak response ratio of loratadine to the internal standard from the *Sample solution*

R_S = peak response ratio of loratadine to the internal standard from the *Standard solution*

C_S = concentration of USP Loratadine RS in the *Standard solution* (mg/mL)

C_U = nominal concentration of loratadine in the *Sample solution* (mg/mL)

Acceptance criteria: 94.0%–105.0%

PERFORMANCE TESTS

- **DELIVERABLE VOLUME (698):** Meets the requirements

IMPURITIES

- **ORGANIC IMPURITIES**

Mobile phase: 4.3 g/L of sodium dodecyl sulfate in a mixture of acetonitrile and water (1:1). Adjust with phosphoric acid to a pH of 2.6 ± 0.1 .

Diluent: *Mobile phase* and water (2:1)

System suitability solution 1: 2 μ g/mL of USP Loratadine RS in *Diluent*

System suitability solution 2: 0.2 μ g/mL of USP Loratadine RS in *Diluent* from *System suitability solution 1*

System suitability solution 3: Transfer an amount of Oral Solution, equivalent to 20 mg of loratadine, into a screw-cap glass container. Add 1 mL of 3% aqueous hydrogen peroxide, and mix. Cap, and heat at 65° for 18–24 h. Allow to cool to room temperature, and then dilute 5 mL with *Diluent* to 25 mL.

Sample solution: 0.2 mg/mL of loratadine from a volume of Oral Solution in *Diluent*

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L7

Column temperature: 30°–40°

Flow rate: 2 mL/min

Injection size: 50 μ L

System suitability

Samples: *System suitability solution 1*, *System suitability solution 2*, and *System suitability solution 3*

[NOTE—See Table 1 for relative retention times.]

Suitability requirements

Resolution: NLT 3.0 between loratadine and 2-hydroxymethyl loratadine, *System suitability solution 3*

Tailing factor: 0.7–1.1, *System suitability solution 1*

Relative standard deviation: NMT 10%, *System suitability solution 2*

Analysis

Sample: *Sample solution*

Calculate the percentage of each individual related compound in the portion of Oral Solution taken:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = individual peak response of each related compound in the *Sample solution*

r_T = sum of all the peak responses in the *Sample solution*, excluding excipient peaks