

Acceptance criteria**Individual impurities:** See *Table 8*.**Total impurities:** The combined total impurities from *Procedure 3* and *Procedure 4* is NMT 0.3%.**Table 8**

Name	Relative Retention Time	Relative Response Factor ^a	Acceptance Criteria, NMT(%)
Benzaldehyde	0.43	0.40	0.1
Benzoic acid	0.55	1.0	0.1
Ephedrone ^b	0.97	—	—
Pseudoephedrine	1.0	0.52	—
Individual unspecified impurity	—	0.52 ^c	0.1

^a Response factors relative to benzoic acid.^b Ephedrone is not quantitated in this method. A separate method is used for the quantitation of this impurity.^c The response factor of pseudoephedrine relative to that of benzoic acid is used in the calculation of individual unspecified impurities.**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in well-closed containers, and store at controlled room temperature.
- **LABELING:** When more than one *Dissolution Test* is given, the labeling states the test used only if *Test 1* is not used. If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states with which *Procedures* the article complies.
- **USP REFERENCE STANDARDS (11)**
 - USP Benzoic Acid RS
 - USP Fexofenadine Hydrochloride RS
 - USP Fexofenadine Related Compound A RS
 - Benzeneacetic acid, 4-[1-oxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]butyl]- α,α -dimethyl.
 - $C_{32}H_{37}NO_4$ 499.65
 - USP Pseudoephedrine Hydrochloride RS

Finasteride $C_{23}H_{36}N_2O_2$ 372.55

4-Azaandrost-1-ene-17-carboxamide, *N*-(1,1-dimethylethyl)-3-oxo-, (5 α ,17 β)-.
N-tert-Butyl-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide [98319-26-7].

» Finasteride contains not less than 98.5 per cent and not more than 101.0 per cent of $C_{23}H_{36}N_2O_2$, calculated on the anhydrous basis.

Packaging and storage—Preserve in tight containers, and store at controlled room temperature.

USP Reference standards (11)—

USP Finasteride RS

Identification—A: *Infrared Absorption* (197M).B: The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

Specific rotation (781S): between -56.0° and -60.0° , determined at 405 nm.

Test solution: 10 mg per mL, in methanol.

Water, Method I (921): not more than 0.3%.

Residue on ignition (281): not more than 0.1%.

Heavy metals, Method II (231): 0.001%.

Chromatographic purity—

Mobile phase—Prepare a filtered and degassed mixture of water, tetrahydrofuran, and acetonitrile (8:1:1). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Diluting solution—Prepare a solution of water and acetonitrile (1:1).

Standard solution—Dissolve an accurately weighed quantity of USP Finasteride RS in *Diluting solution*, and dilute quantitatively, and stepwise if necessary, with *Diluting solution* to obtain a solution having a known concentration of about 1.0 mg per mL.

Test solution—Transfer about 100 mg of Finasteride, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Diluting solution* to volume, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 210-nm detector and a 4.6-mm \times 30-cm column that contains 4- μ m packing L1. The flow rate is about 1.5 mL per minute. The column temperature is maintained at 60° . Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*; the column efficiency is not less than 10,000 theoretical plates; and the tailing factor is not more than 1.3.

Procedure—Inject a volume (about 15 μ L) of the *Test solution* into the chromatograph, record the chromatograms, and measure the peak responses. Calculate the per centage of each impurity in the portion of Finasteride taken by the formula:

$$100(r_i / r_s)$$

in which r_i is the peak response for each impurity, and r_s is the sum of the responses of all peaks: not more than 0.5% of any individual impurity is found; and not more than 1.0% of total impurities is found.

Assay—

Mobile phase—Prepare a filtered and degassed mixture of water and tetrahydrofuran (4:1). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Diluting solution—Prepare a solution of water and acetonitrile (1:1).

Standard preparation—Dissolve an accurately weighed quantity of USP Finasteride RS in *Diluting solution*, and dilute quantitatively, and stepwise if necessary, with *Diluting solution* to obtain a solution having a known concentration of about 200 μ g per mL.

Assay preparation—Transfer about 20 mg of Finasteride, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Diluting solution* to volume, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 215-nm detector and a 3.0-mm \times 3.0-cm column that contains 3- μ m packing L7. The flow rate is about 3 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*; the column efficiency is not less than 1800 theoretical plates; the tailing factor is not more than 1.3; and the relative standard deviation for replicate injections is not more than 1.0%.

Procedure—Separately inject equal volumes (about 10 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the

responses for the major peaks. Calculate the quantity, in mg, of $C_{23}H_{36}N_2O_2$ in the portion of Finasteride taken by the formula:

$$100C(r_u / r_s)$$

in which C is the concentration, in mg per mL, of USP Finasteride RS in the *Standard preparation*; and r_u and r_s are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Finasteride Tablets

» Finasteride Tablets contain not less than 95.0 percent and not more than 105.0 per cent of finasteride ($C_{23}H_{36}N_2O_2$).

Packaging and storage—Preserve in tight, light-resistant containers, and store at controlled room temperature.

USP Reference standards (11)—

USP Finasteride RS

Identification—The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

Dissolution (711)—

Medium: water; 900 mL.

Apparatus 2: 50 rpm.

FOR PRODUCTS LABELED AS 5-MG TABLETS—

Time: 45 minutes.

Determine the amount of $C_{23}H_{36}N_2O_2$ dissolved by employing the following method.

Mobile phase—Prepare a filtered and degassed mixture of acetonitrile and water (29:21). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Diluting solution—Prepare a solution of acetonitrile and water (7:3).

Standard solution—Dissolve an accurately weighed quantity of USP Finasteride RS in *Diluting solution*, and dilute quantitatively, and stepwise if necessary, with *Diluting solution* to obtain a solution having a known concentration approximately equivalent to the sample under test.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 220-nm detector and a 4.6-mm \times 5-cm column that contains packing L1. The column temperature is maintained at 45 °. The flow rate is about 2 mL per minute. Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*: the capacity factor, k' , is not less than 2.0; the column efficiency is greater than 1000 theoretical plates; the tailing factor is less than 2; and the relative standard deviation for replicate injections is less than 2.0%.

Procedure—Separately inject equal volumes (about 200 μ L) of the solution under test and the *Standard solution* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity of $C_{23}H_{36}N_2O_2$ dissolved.

Tolerances—Not less than 75% (Q) of the labeled amount of $C_{23}H_{36}N_2O_2$ is dissolved in 45 minutes.

FOR PRODUCTS LABELED AS 1-MG TABLETS—

Time: 30 minutes.

Mobile phase—Prepare a degassed mixture of acetonitrile and water (11:9). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Diluting solution—Prepare a solution of water and acetonitrile (7:3).

Standard solution—Dissolve an accurately weighed quantity of USP Finasteride RS in *Diluting solution*, to obtain a solution having a known concentration of 0.1 mg per mL. Dilute this solution quantitatively, and stepwise if necessary, in 0.5% sodium lauryl sulfate to obtain a solution containing 0.001 mg of finasteride per mL.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 220-nm detector and a 4.6-mm \times 15-cm column that contains 5- μ m packing L11. The column temperature is maintained at 45 °. The flow rate is about 1.5 mL per minute. Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*: the column efficiency is not less than 5000 theoretical plates; the tailing factor is not more than 2; and the relative standard deviation for replicate injections is not more than 2%.

Procedure—Separately inject equal volumes (about 100 μ L) of the solution under test and the *Standard solution* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity of finasteride ($C_{23}H_{36}N_2O_2$) dissolved.

Tolerances—Not less than 80% (Q) of the labeled amount of $C_{23}H_{36}N_2O_2$ is dissolved in 30 minutes.

Uniformity of dosage units (905): meet the requirements.

Assay—

Mobile phase—Prepare a filtered and degassed mixture of 2.5 mM phosphoric acid and acetonitrile (1:1). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Diluting solution—Prepare a solution of acetonitrile and water (7:3).

Standard preparation—Dissolve an accurately weighed quantity of USP Finasteride RS in *Diluting solution*, and dilute quantitatively, and stepwise if necessary, with *Diluting solution* to obtain a solution having a known concentration of about 100 μ g per mL.

Assay preparation—Weigh and finely powder not fewer than 20 Tablets. Transfer an amount of powder equivalent to about 10 mg of finasteride, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Diluting solution* to volume, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 240-nm detector and a 4.6-mm \times 10.0-cm column that contains packing L1. The column temperature is maintained at 45 °. The flow rate is about 1.5 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the capacity factor, k' , is not less than 2.0; the column efficiency is not less than 1000 theoretical plates; the tailing factor is not more than 2.0; and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 20 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of finasteride ($C_{23}H_{36}N_2O_2$) in the portion of T ablets taken by the formula:

$$100C(r_u / r_s)$$

in which C is the concentration, in mg per mL, of USP Finasteride RS in the *Standard preparation*; and r_u and r_s are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.