

Solution B: Methanol

Buffer: 1.4 g/L monobasic sodium phosphate monohydrate and 2.7 g/L of dibasic sodium phosphate heptahydrate. Adjust with either 1 N sodium hydroxide or 10% phosphoric acid to a pH of 6.9 ± 0.1 .

Diluent: Acetonitrile and *Buffer* (1:1)

Mobile phase: See the gradient table below.

Time (min)	Solution A (%)	Solution B (%)	Flow Rate (mL/min)
0	58	42	1.2
40	58	42	1.2
68	20	80	1.5
108	20	80	1.5
110	58	42	1.2
120	58	42	1.2

Standard solution: 2 μ g/mL of USP Cetirizine Hydrochloride RS in *Diluent*

Sample solution: 2 mg/mL cetirizine hydrochloride in *Diluent*

Chromatographic system

(See *Chromatography* <621>, *System Suitability*.)

Mode: LC

Detector: UV 232 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Column temperature: 40°

Injection size: 10 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2

Column efficiency: NLT 6000 theoretical plates

Relative standard deviation: NMT 5.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Cetirizine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

- r_u = peak response for each impurity from the *Sample solution*
- r_s = peak response for cetirizine from the *Standard solution*
- C_s = concentration of USP Cetirizine Hydrochloride RS in the *Standard solution* (mg/mL)
- C_u = concentration of Cetirizine Hydrochloride in the *Sample solution* (mg/mL)
- F = relative response factor (see *Impurity Table 2* for values)

Acceptance criteria: See *Impurity Table 2*.

Total impurities: NMT 0.3%. [NOTE—Disregard peaks below 0.05%.]

Impurity Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Deschlorocetirizine ^a	0.35	0.56	0.1
Cetirizine ethanol ^b	0.53	1.2	0.1
CBHP ^c	0.66	1.3	0.1
2-Chlorocetirizine ^d	0.70	0.52	0.1
Cetirizine methyl ester ^e	0.81	0.96	0.1
3-Chlorocetirizine ^f	0.87	0.52	0.1
Cetirizine	1.0	—	—
Cetirizine acetic acid ^g	1.15	0.97	0.1
Cetirizine N-oxide ^h	1.25	0.81	0.1
4-CBH ⁱ	1.55	1.2	0.1
4-Chlorobenzophenone ^j	1.66	0.50	0.1
Cetirizine dimer ^k	2.48	1.4	0.1
Any individual unspecified impurity	—	1.0	0.10

^a 2-[2-(4-Diphenylmethyl)piperazin-1-yl]ethoxyacetic acid.

^b 2-[4-[(4-Chlorophenyl)phenylmethyl]piperazin-1-yl]ethanol.

^c 1-[(4-Chlorophenyl)phenylmethyl]piperazine.

^d 2-[2-(4-[(2-Chlorophenyl)phenylmethyl]piperazin-1-yl]ethoxyacetic acid.

^e Methyl 2-(2-(4-[(4-chlorophenyl)phenylmethyl]piperazin-1-yl)ethoxyacetate.

^f 2-[2-[4-(3-Chlorophenyl)phenylmethyl]piperazin-1-yl]ethoxyacetic acid.

^g 2-[4-[(4-Chlorophenyl)phenylmethyl]piperazin-1-yl]acetic acid.

^h 2-(2-(4-Chlorophenyl)(phenyl)methyl)piperazin-1-yl]ethoxyacetic acid N¹-oxide.

ⁱ 4-Chlorobenzhydrol.

^j (4-Chlorophenyl)phenylmethanone.

^k 1,4-Bis[(4-chlorophenyl)phenylmethyl]piperazine.

SPECIFIC TESTS

- **pH** <791>: 1.2–1.8, in an aqueous solution 1 in 20
- **Loss on Drying** <731>: Dry a sample at 105° to a constant weight: it loses NMT 0.5% of its weight.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, protected from light and moisture. Store at room temperature.
- **LABELING:** Label it to indicate with which impurity procedures the article complies.
- **USP REFERENCE STANDARDS** <11>
USP Cetirizine Hydrochloride RS
USP Cetirizine Related Compound A RS
(RS)-2-[2-[4-[(4-Chlorophenyl)phenylmethyl]piperazin-1-yl]ethoxyacetic acid ethyl ester dihydrochloride.
C23H29ClN2O3 · 2HCl 489.86

Cetirizine Hydrochloride Oral Solution**DEFINITION**

Cetirizine Hydrochloride Oral Solution contains NL T 90.0% and NMT 110.0% of the labeled amount of C21H25ClN2O3 · 2HCl.

IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.
- B. **IDENTIFICATION TESTS—GENERAL, Chloride** <191>: Meets the requirements

ASSAY**• PROCEDURE****Solution A:** Acetonitrile**Solution B:** 1.36 g/L of monobasic potassium phosphate in water. Adjust with a 2% solution of phosphoric acid in water to a pH of 3.5 ± 0.05 .**Diluent:** Acetonitrile and water (3:7)**Mobile phase:** See the gradient table below.

Time (min)	Solution A (%)	Solution B (%)
0	5	95
15	5	95
22	25	75
35	25	75
40	5	95
50	5	95

Standard stock solution: 5 mg/mL of USP Cetirizine Hydrochloride RS in water**Standard solution:** 0.1 mg/mL of USP Cetirizine Hydrochloride RS in *Diluent*, from the *Standard stock solution***Sample solution:** Transfer an amount of Oral Solution to a suitable volumetric flask to obtain a nominal concentration of 0.1 mg/mL of cetirizine hydrochloride. Dissolve in 60% of the flask volume of *Diluent* by swirling. Sonicate 3 min, and dilute with *Diluent* to volume. Pass through a suitable filter.**Chromatographic system**(See *Chromatography* (621), *System Suitability*.)**Mode:** LC**Detector:** UV 233 nm**Column:** 4.6-mm \times 25-cm; 5- μ m packing L10**Column temperature:** 50°**Flow rate:** 2 mL/min**Injection size:** 20 μ L**System suitability****Sample:** *Standard solution***Suitability requirements****Tailing factor:** NMT 1.5**Relative standard deviation:** NMT 1.0%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of $C_{21}H_{25}ClN_2O_3 \cdot 2HCl$ in the portion of Oral Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response from the *Sample solution* r_s = peak response from the *Standard solution* C_s = concentration of USP Cetirizine Hydrochloride RS in the *Standard solution* (mg/mL) C_u = nominal concentration of cetirizine hydrochloride in the *Sample solution* (mg/mL)**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS****• DELIVERABLE VOLUME (698):** Meets the requirements**IMPURITIES****Organic Impurities****• PROCEDURE****Solution A:** Transfer 50 mL of water to a 100-mL volumetric flask, add 5.5 mL of sulfuric acid, and dilute with water to volume.**Mobile phase:** Acetonitrile, water, and *Solution A* (965:33:1)**Diluent:** Acetonitrile and water (7:13)**Standard solution:** 6 μ g/mL of USP Cetirizine Hydrochloride RS in *Diluent***Sample solution:** 0.6 mg/mL of cetirizine hydrochloride in *Diluent*. Transfer an amount of Oral Solution to a suitable volumetric flask, dissolve in *Diluent*, sonicate for 10 min, and dilute with *Diluent* to volume. Pass through a suitable filter.**Chromatographic system**(See *Chromatography* (621), *System Suitability*.)**Mode:** LC**Detector:** UV 230 nm**Column:** 4.6-mm \times 25-cm; 5- μ m packing L3**Column temperature:** 30°**Flow rate:** 2 mL/min**Injection size:** 10 μ L**System suitability****Sample:** *Standard solution***Suitability requirements****Column efficiency:** NLT 10,000 theoretical plates**Tailing factor:** NMT 1.5**Relative standard deviation:** NMT 5.0%**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Oral Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response for each impurity from the *Sample solution* r_s = peak response for cetirizine from the *Standard solution* C_s = concentration of USP Cetirizine Hydrochloride RS in the *Standard solution* (mg/mL) C_u = nominal concentration of cetirizine hydrochloride in the *Sample solution* (mg/mL)**Acceptance criteria:** See *Impurity Table 1*.**Total impurities:** NMT 0.8%**Impurity Table 1**

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Cetirizine acetic acid ^a	0.69	P ^b
2-Chlorocetirizine ^c	0.83	P
Cetirizine	1.00	—
Cetirizineethanol ^d	1.30	P
Ethoxycetirizine ^e	1.38	P
CBHP ^f	1.52	P
Propylene glycol ester of cetirizine (diastereomer 1) ^g	1.53	0.2
Propylene glycol ester of cetirizine (diastereomer 2) ^g	1.61	0.2
Deschlorocetirizine ^h	1.65	P
Glyceryl ester of cetirizine ⁱ	2.20	0.5
Any individual unspecified impurity	—	0.2

^a 2-[4-[(4-Chlorophenyl)phenylmethyl]piperazin-1-yl]acetic acid.^b P = Process impurity. Provided for information only; the content is not calculated and not reported. The content is controlled in the drug substance monograph.^c 2-[2-[4-[(2-Chlorophenyl)phenylmethyl]piperazin-1-yl]ethoxy]acetic acid.^d 2-[4-[(4-Chlorophenyl)phenylmethyl]piperazin-1-yl]ethanol.^e 2-[2-[2-[4-[(4-Chlorophenyl)phenylmethyl]piperazin-1-yl]ethoxy]acetic acid (ethoxycetirizine).^f 1-[(4-Chlorophenyl)phenylmethyl]piperazine.^g 2-Hydroxypropyl 2-(2-[(4-chlorophenyl)phenylmethyl]piperazin-1-yl)ethoxyacetate.^h 2-(2-[4-(Diphenylmethyl)piperazin-1-yl]ethoxy)acetic acid.ⁱ 2,3-Dihydroxypropyl 2-(2-[(4-chlorophenyl)phenylmethyl]piperazin-1-yl)ethoxyacetate.**SPECIFIC TESTS****• pH (791):** 4.0–5.1**• MICROBIAL ENUMERATION TESTS (61) and TESTS FOR SPECIFIED MICROORGANISMS (62):** The total aerobic microbial count does not exceed 100 cfu/mL, and the total combined molds and yeasts count does not exceed 10 cfu/mL. It meets the requirements of the tests for absence of *Escherichia coli*.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers, and protect from light. Store at controlled room temperature or in a cold place.
- **USP REFERENCE STANDARDS (11)**
USP Cetirizine Hydrochloride RS

Cetirizine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets

DEFINITION

Cetirizine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of cetirizine hydrochloride ($C_{21}H_{25}ClN_2O_3 \cdot 2HCl$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$).

IDENTIFICATION

- The retention times of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the *Assay*.

ASSAY• **CETIRIZINE HYDROCHLORIDE**

Buffer: 3.5 g/L of monobasic ammonium phosphate and 1.0 g/L of tetrabutylammonium bisulfate in water. Adjust with phosphoric acid to a pH of 2.5.

Diluent: Methanol and *Buffer* (2:3)

Solution A: Acetonitrile, methanol, and *Buffer* (9:2:29)

Solution B: Acetonitrile

Mobile phase: See the gradient table below.

Time (min)	Solution A (%)	Solution B (%)
0	100	0
27.0	100	0
30.0	0	100
30.1	100	0
35.0	100	0

Standard stock solution: 0.5 mg/mL of USP Cetirizine Hydrochloride RS in *Diluent*. [NOTE—Sonicate to dissolve.]

Standard solution: 0.025 mg/mL of USP Cetirizine Hydrochloride RS in *Diluent* from the *Standard stock solution*

Sample solution: 0.025 mg/mL of cetirizine hydrochloride (from NMT 10 finely powdered T tablets) prepared as follows. Dissolve the Tablets first in methanol, using 22.5% of the final flask volume. Sonicate for NL T 20 min with vigorous swirling every 5 min. To the solution add a volume of *Buffer* equal to 26% of the final flask volume. Allow the solution to equilibrate to room temperature. Dilute with *Diluent* to volume. Pass a portion through a membrane filter of 0.45- μ m pore size.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 15-cm; 3.5- μ m packing L1

Column temperature: 30°

Autosampler temperature: 5°

Flow rate: 1mL/min

Injection size: 25 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 3000 theoretical plates

Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of cetirizine hydrochloride ($C_{21}H_{25}ClN_2O_3 \cdot 2HCl$) in the portion of T tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of cetirizine from the *Sample solution*

r_s = peak response of cetirizine from the *Standard solution*

C_s = concentration of USP Cetirizine Hydrochloride RS in the *Standard solution* (mg/mL)

C_u = nominal concentration of cetirizine hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

• **PSEUDOEPHEDRINE HYDROCHLORIDE**

Buffer: 0.8 g/L of ammonium acetate in water. To 1 L of the solution add 1.0 mL of triethylamine. Adjust with glacial acetic acid to a pH of 4.5.

Mobile phase: Acetonitrile and *Buffer* (3:7)

Standard solution: 0.5 mg/mL of USP Pseudoephedrine Hydrochloride RS in *Mobile phase*. [NOTE—Sonicate to dissolve.]

Sample stock solution: 2.4 mg/mL of pseudoephedrine hydrochloride (from 5 finely powdered T tablets) prepared as follows. Dissolve the crushed Tablets first in acetonitrile, using 24% of the final flask volume. Sonicate for NL T 15 min. To the solution add a volume of *Buffer* equal to 56% of the final flask volume. Sonicate for NL T 15 min. Shake the flask for NLT 10 min. Allow the solution to equilibrate to room temperature. Dilute with *Mobile phase* to volume. Centrifuge a portion for 15 min to obtain a clear supernatant.

Sample solution: 0.5 mg/mL of pseudoephedrine hydrochloride in *Mobile phase*, from the *Sample stock solution*. Pass the solution through a membrane filter of 0.45- μ m pore size.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L9

Flow rate: 1.5 mL/min

Injection size: 25 μ L

Run time: 2 times the retention time of pseudoephedrine

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 1000 theoretical plates

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the portion of T tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of pseudoephedrine from the *Sample solution*