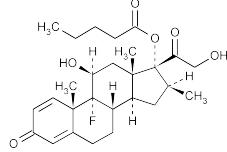


terone, and 1.0 for betamethasone acetate. Calculate the quantity, in mg, of betamethasone acetate ($C_{24}H_{31}FO_6$) in each mL of the Injectable Suspension taken by the formula:


$$0.1C / V(R_U / R_S)$$

in which C is the concentration, in μg per mL, of USP Betamethasone Acetate RS in the *Standard preparation*; V is the volume, in mL, of Injectable Suspension taken; and R_U and R_S are the peak response ratios obtained for betamethasone acetate and methyltestosterone from the *Assay preparation* and the *Standard preparation*, respectively. Calculate the quantity, in mg, of betamethasone ($C_{22}H_{29}FO_5$) equivalent to the quantity of betamethasone sodium phosphate ($C_{22}H_{28}FNa_2O_8P$), in each mL of the Injectable Suspension taken by the formula:

$$(392.46/516.41)(0.1C/V)(R_U / R_S)$$

in which 392.46 and 516.41 are the molecular weights of betamethasone and betamethasone sodium phosphate, respectively; C is the concentration, in μg per mL, of USP Betamethasone Sodium Phosphate RS in the *Standard preparation*; V is the volume, in mL, of Injectable Suspension taken; and R_U and R_S are the peak response ratios obtained for betamethasone phosphate and methyltestosterone from the *Assay preparation* and the *Standard preparation*, respectively.

Betamethasone Valerate

$C_{27}H_{37}FO_6$ 476.59
Pregna-1,4-diene-3,20-dione, 9-fluoro-11,21-dihydroxy-16-methyl-17-[(1-oxopentyl)oxy]-, (11 β ,16 β)-.
9-Fluoro-11 β ,17,21-trihydroxy-16 β -methylpregna-1,4-diene-3,20-dione 17-valerate [2152-44-5].

» Betamethasone Valerate contains not less than 97.0 percent and not more than 103.0 per cent of $C_{27}H_{37}FO_6$, calculated on the dried basis.

Packaging and storage—Preserve in tight containers.

USP Reference standards (11)—

USP Beclomethasone Dipropionate RS
USP Betamethasone Valerate RS

Identification—

A: Infrared Absorption (197M).

B: Thin-Layer Chromatographic Identification Test (201)—

Test solution: 1 mg per mL, in alcohol.

Developing solvent system: a mixture of toluene and ethyl acetate (1:1).

Procedure—Proceed as directed in the chapter. Spray the plate with a mixture of sulfuric acid, methanol, and nitric acid (10:10:1), and heat at 105° for 15 minutes.

Specific rotation (781S): between +75° and +82°.

Test solution: 10 mg per mL, in dioxane.

Loss on drying (731)—Dry it at 105° for 3 hours: it loses not more than 0.5% of its weight.

Residue on ignition (281): not more than 0.2%, a platinum crucible being used.

Chromatographic purity—

Mobile phase—Prepare a filtered and degassed mixture of acetonitrile, water, and glacial acetic acid (550:450:1). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Test solution—Transfer about 4 mg of Betamethasone V alerate, accurately weighed, to a suitable flask. Add 10 mL of *Mobile phase*, and shake until dissolved.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 254-nm detector and a 4.6-mm × 15-cm column that contains packing L1. The flow rate is about 1 mL per minute. Chromatograph the *Test solution*, and record the peak responses as directed for *Procedure*: the resolution, R , between betamethasone valerate and any impurity is not less than 1.5; and the column efficiency is not less than 9000 theoretical plates.

Procedure—Inject a volume (about 10 μL) of the *Test solution* into the chromatograph, record the chromatogram, and measure all of the peak responses. Calculate the per centage of each impurity in the portion of Betamethasone V alerate taken by the formula:

$$100(r_i / r_s)$$

in which r_i is the peak response for each impurity; and r_s is the sum of all the peak responses: not more than 1.0% of any individual impurity is found; and not more than 2.0% of total impurities is found.

Assay—

Mobile phase—Prepare a filtered and degassed mixture of acetonitrile and water (3:2). Make adjustments if necessary (see *System Suitability* under *Chromatography* (621)).

Internal standard solution—Transfer about 40 mg of beclomethasone dipropionate to a 100-mL volumetric flask, add a solution of glacial acetic acid in methanol (1 in 1000) to volume, and mix. Transfer 5.0 mL of this solution to a suitable stoppered vial, add 10.0 mL of *Internal standard solution*, and mix to obtain a solution having a known concentration of about 0.2 mg of USP Betamethasone V alerate RS per mL.

Standard preparation—Transfer about 30 mg of USP Betamethasone Valerate RS, accurately weighed, to a 50-mL volumetric flask, add a solution of glacial acetic acid in methanol (1 in 1000) to volume, and mix. Transfer 5.0 mL of this solution to a suitable stoppered vial, add 10.0 mL of *Internal standard solution*, and mix to obtain a solution having a known concentration of about 0.2 mg of USP Betamethasone V alerate RS per mL.

Assay preparation—Transfer about 60 mg of Betamethasone Valerate, accurately weighed, to a 100-mL volumetric flask, add a solution of glacial acetic acid in methanol (1 in 1000) to volume, and mix. Transfer 5.0 mL of this solution to a suitable stoppered vial, add 10.0 mL of *Internal standard solution*, and mix.

Chromatographic system (see *Chromatography* (621))—The liquid chromatograph is equipped with a 254-nm detector and a 4-mm × 30-cm column that contains packing L1. The flow rate is about 1.2 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the relative retention times are about 1.7 for beclomethasone dipropionate and 1.0 for betamethasone valerate; the resolution, R , between betamethasone valerate and beclomethasone dipropionate is not less than 4.5; and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 10 μL) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of $C_{27}H_{37}FO_6$ in the portion of Betamethasone V alerate taken by the formula:

$$300C(R_U / R_S)$$

in which C is the concentration, in mg per mL, of USP Betamethasone Valerate RS in the *Standard preparation*; and R_U

and R_s are the peak response ratios obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Betamethasone Valerate Cream

» Betamethasone Valerate Cream contains an amount of betamethasone valerate ($C_{27}H_{37}FO_6$) equivalent to not less than 90.0 per cent and not more than 110.0 per cent of the labeled amount of betamethasone ($C_{22}H_{29}FO_5$), in a suitable cream base.

Packaging and storage—Preserve in collapsible tubes or in tight containers.

USP Reference standards (11)—

USP Beclomethasone Dipropionate RS
USP Betamethasone Valerate RS

Identification—Transfer an amount of Cream, equivalent to about 2 mg of betamethasone, to a separator, add 20 mL of water and 2 mL of dilute hydrochloric acid (1 in 120), and mix. Extract with four 50-mL portions of chloroform, and combine the extracts. Filter through a cotton pledget, previously layered over with anhydrous sodium sulfate. Evaporate the filtrates on a steam bath under a stream of dry nitrogen to dryness. Dissolve the residue in alcohol to obtain a solution containing about 1 mg per mL. Proceed as directed in *Identification test B* under *Betamethasone Valerate*, beginning with "Apply 10 μ L of this solution."

Microbial enumeration tests (61) and Tests for specified microorganisms (62)—It meets the requirements of the tests for absence of *Staphylococcus aureus* and *Pseudomonas aeruginosa*.

Minimum fill (755): meets the requirements.

Assay—

Mobile phase, Internal standard solution, Standard preparation, and Chromatographic system—Proceed as directed in the *Assay* under *Betamethasone Valerate*.

Assay preparation—Transfer an accurately weighed portion of Cream, equivalent to about 2.5 mg of betamethasone, to a 50-mL centrifuge tube. Add 10.0 mL of the *Internal standard solution* and 5.0 mL of a 1 in 1000 solution of glacial acetic acid in methanol. Insert the stopper into the tube, and place in a water bath held at 60° until the specimen melts. Remove from the bath, and shake vigorously until the specimen resolidifies. Repeat the heating and shaking two more times. Place the tube in an ice-methanol bath for 20 minutes, then centrifuge to separate the phases. Decant the clear supernatant into a suitable stoppered flask, and allow to warm to room temperature.

Procedure—Proceed as directed for *Procedure* in the *Assay* under *Betamethasone Valerate*. Calculate the quantity, in mg, of $C_{22}H_{29}FO_5$ in the portion of Cream taken by the formula:

$$(392.46 / 476.59)(15C)(R_U / R_S)$$

in which 392.46 and 476.59 are the molecular weights of betamethasone and betamethasone valerate, respectively; C is the concentration, in mg per mL, of USP Betamethasone V alerate RS in the *Standard preparation*; and R_U and R_S are the peak response ratios obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Betamethasone Valerate Lotion

» Betamethasone Valerate Lotion contains an amount of Betamethasone Valerate ($C_{27}H_{37}FO_6$)

equivalent to not less than 95.0 per cent and not more than 115.0 per cent of the labeled amount of betamethasone ($C_{22}H_{29}FO_5$).

Packaging and storage—Preserve in tight, light-resistant containers, and store at controlled room temperature.

USP Reference standards (11)—

USP Betamethasone Valerate RS

Identification—Mix an amount of Lotion, equivalent to about 5 mg of betamethasone, with a mixture of methanol and chloroform (2:1) to make 10 mL. Apply 20 μ L of this solution and 20 μ L of a Standard solution of USP Betamethasone V alerate RS in a mixture of methanol and chloroform (2:1) containing 0.6 mg per mL to a suitable thin-layer chromatographic plate (see *Chromatography (621)*) coated with a 0.25-mm layer of chromatographic silica gel mixture. Allow the spots to dry, and develop the chromatogram in a solvent system consisting of a mixture of chloroform and ethyl acetate (1:1), until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the developing chamber, mark the solvent front, and allow the solvent to evaporate. View the spots under UV light: the R_F value of the principal spot obtained from the test solution corresponds to that obtained from the Standard solution.

Microbial enumeration tests (61) and Tests for specified microorganisms (62)—It meets the requirements of the tests for absence of *Staphylococcus aureus* and *Pseudomonas aeruginosa*.

Minimum fill (755): meets the requirements.

pH (791): between 4.0 and 6.0.

Assay—

Mobile phase and Chromatographic system—Proceed as directed in the *Assay* under *Betamethasone Valerate*.

Internal standard solution—Transfer about 50 mg of beclomethasone dipropionate to a 25-mL volumetric flask, add chloroform to volume, and mix.

Standard preparation—Transfer about 40 mg of USP Betamethasone Valerate RS, accurately weighed, to a 25-mL volumetric flask, add chloroform to volume, and mix. Pipet 2 mL of this solution into a 50-mL centrifuge tube, add 10 mL of 0.1 N hydrochloric acid, then add 2.0 mL of *Internal standard solution*. Insert the stopper into the tube, shake vigorously for about 2 minutes, and centrifuge to separate the phases. Using a syringe, transfer the lower, chloroform phase to a small stoppered vial. Evaporate the chloroform on a steam bath, at low heat, with the aid of a stream of nitrogen. Add 4.0 mL of a 1 in 1000 solution of glacial acetic acid in methanol, and swirl to dissolve the residue.

Assay preparation—Transfer an accurately weighed portion of Lotion, equivalent to about 2.5 mg of betamethasone, to a stoppered, 50-mL centrifuge tube. Add 10.0 mL of 0.1 N hydrochloric acid, insert the stopper, and shake to disperse the specimen. Add 2.0 mL of chloroform and 2.0 mL of *Internal standard solution*, insert the stopper, and proceed as directed for *Standard preparation*, beginning with "shake vigorously for about 2 minutes."

Procedure—Proceed as directed for *Procedure* in the *Assay* under *Betamethasone Valerate*. Calculate the quantity, in mg, of betamethasone ($C_{22}H_{29}FO_5$) in the portion of Lotion taken by the formula:

$$(392.46 / 476.59)(4C)(R_U / R_S)$$

in which 392.46 and 476.59 are the molecular weights of betamethasone and betamethasone valerate, respectively; C is the concentration, in mg per mL, of USP Betamethasone V alerate RS in the *Standard preparation*; and R_U and R_S are the peak response ratios obtained from the *Assay preparation* and the *Standard preparation*, respectively.