Test solution—Transfer about 38 mg of Betahistine Hydrochloride, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Mobile phase* to volume, and mix.

Procedure—Inject about 10 μ L of the *Test solution* into the chromatograph, record the chromatogram, and measure the peak responses. Calculate the per centage of each impurity in the portion of Betahistine Hydrochloride taken by the formula:

$100F(r_i/r_s)$

in which F is the response factor of the respective impurity (see *Table 1*) and 1.0 for all other peaks; r_i is the peak response for each impurity; and r_s is the sum of the responses of all of the peaks, adjusted for the relative response factor.

Table 1

Impurity Name	Relative Retention Time	Response Factor (F)	Limit (%)
2-(2-Hydroxy- ethyl)pyridine	0.3	0.5	0.2
2-Vinylpyridine	0.4	0.4	0.2
N-Methyl-N,N-bis(2- pyridin-2-yl-ethyl)- amine	2.4	1.4	0.2

In addition to not exceeding the limits for impurities in *Table 1*, not more than 0.1% of any other individual impurity is found; and not more than 0.5 % of total impurities is found.

Assay-

Ammonium acetate buffer—Dissolve about 0.69 g of ammonium acetate in 1000 mL of water. Adjust with glacial acetic acid to a pH of 4.7.

Mobile phase—Prepare a filtered and degassed mixture of 350 mL of acetonitrile and 650 mL of Ammonium acetate buffer, containing 2.88 g of sodium laur yl sulfate. Make adjustments if necessary (see System Suitability under Chromatography (621)).

Standard preparation—Dissolve an accurately weighed quantity of USP Betahistine Hydrochloride RS in *Mobile phase* to obtain a solution having a known concentration of about 0.38 mg per mL.

Assay preparation—Transfer about 38 mg of Betahistine Hydrochloride, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Mobile phase* to volume, and mix.

Chromatographic system (see Chromatography $\langle 621 \rangle$)—The liquid chromatograph is equipped with a 254-nm detector and 3.0-mm \times 15-cm column that contains packing L1. The column temperature is maintained at 40 °. The flow rate is about 0.5 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure:* the column efficiency is not less than 5000 theoretical plates; the tailing factor for the betahistine peak is not more than 2.0; and the relative standard deviation for replicate injections is not more than 2.0%.

<code>Procedure</code>—Separately inject equal volumes (about 10 $\,\mu$ L) of the <code>Standard preparation</code> and the <code>Assay preparation</code> into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of $C_8H_{12}N_2 \cdot 2HCl$ in the portion of Betahistine Hydrochloride taken by the formula:

$100C(r_U/r_S)$

in which C is the concentration, in mg per mL, of USP Betahistine Hydrochloride RS in the Standard preparation; and r_U and r_S are the peak responses obtained from the Assay preparation and the Standard preparation, respectively.

Betaine Hydrochloride

C₅H₁₁NO₂ · HCl 153.61

Methanaminium, 1-carboxy-*N*, *N*, *N*-trimethyl-, chloride. Betaine hydrochloride.

(Carboxymethyl)trimethylammonium chloride [590-46-5].

» Betaine Hydrochloride contains not less than 98.0 percent and not more than 100.5 per cent of C_5 $H_{11}NO_2 \cdot HCI$, calculated on the anhydrous basis.

Packaging and storage—Preserve in well-closed containers.

USP Reference standards (11)—USP Betaine Hydrochloride RS

Identification—

A: *Infrared Absorption* (197K).

B: A solution (1 in 20) responds to the tests for *Chloride* $\langle 191 \rangle$.

pH $\langle 791 \rangle$: between 0.8 and 1.2, in a solution (1 in 4).

Water, Method I (921): not more than 0.5%.

Residue on ignition $\langle 281 \rangle$: not more than 0.1%.

Heavy metals (231): 0.001%.

Assay— Transfer about 400 mg of Betaine Hydrochloride, accurately weighed, to a conical flask, add 50 mL of glacial acetic acid, and heat gently with swirling until solution is complete. Add 25 mL of mer curic acetate TS, cool, add 2 drops of cr ystal violet TS, and titrate with 0.1 N per chloric acid VS to a green endpoint. Perform a blank determination, and make any necessary correction. Each mL of 0.1 N per chloric acid is equivalent to 15.36 mg of C $_5$ H $_{11}$ NO $_2$ · HCl.

Betamethasone

C₂₂ H₂₉FO₅ 392.46

Pregna-1,4-diene-3,20-dione, 9-fluoro-11,17,21-trihydroxy-16-methyl-, $(11\beta,16\beta)$ -.

9-Fluoró-11 β ,17,21-trihydroxy-16 β -methylpregna-1,4-diene-3,20-dione [378-44-9].

» Betamethasone contains not less than 97.0 percent and not more than 103.0 per cent of $C_{22}H_{29}FO_5$, calculated on the dried basis.

Packaging and storage—Preserve in tight containers. Store between 2° and 30° .

USP Reference standards (11)—

USP Betamethasone RS

Identification—

A: Infrared Absorption (197M).

B: Thin-Layer Chromatographic Identification Test (201)—

Test solution—Prepare a solution of Betamethasone in dehydrated alcohol containing 0.5 mg per mL.

Developing solvent system: a mixture of chloroform and diethylamine (2:1).