Procedure—Separately inject equal volumes (about 10 µL) of the Standard solution and the Test solution into the chromatograph, record the chromatograms, and measure the areas for the major peaks. Calculate the quantities, in mg, of atenolol (C₁₄H₂₂N₂O₃) and chlorthalidone (C₁₄H₁₁ClN₂O₄S) dissolved by the same formula:

$1170C(r_U / r_S)$

in which C is the concentration, in mg per mL, of the appropriate Reference Standard in the Standard solution; and r_U and r_S are the responses of the corresponding analyte obtained from the Test solution and the Standard solution, respectively.

Tolerances—Not less than 80% (Q) of the labeled amount of atenolol (C₁₄H₂₂N₂O₃) is dissolved in 45 minutes, and not less than 70% (Q) of the labeled amount of chlorthalidone (C₁₄H₁₁ClN₂O₄S) is dissolved in 45 minutes.

Uniformity of dosage units (905): meet the requirements.

Procedure for content uniformity—Proceed as directed in the Assay, except to prepare the Assay preparation as follows. Transfer 1 Tablet to a volumetric flask of such capacity that when filled to volume, a concentration of about 0.25 mg of chlorthalidone per mL is obtained. Add a mixture of water and acetonitrile (1:1) to about half the capacity of the flask, and shake by mechanical means for not less than 15 minutes to disintegrate the Tablet. Dilute with water to volume, and mix. Pass a portion of this solution through a filter having a 0.5- µm or finer porosity, and use the filtrate as the Assay preparation. Calculate the quantities, in mg, of atenolol (C $_{14}H_{22}N_2O_3$) and chlorthalidone (C $_{14}H_{11}ClN_2O_4S$) in the Tablet taken by the formula:

$CV(r_U/r_S)$

in which V is the volume, in mL, of the volumetric flask used to prepare the Assay preparation; and the other terms are as defined in the Assay.

Assay-

Mobile phase—Prepare a mixture of 740 mL of water, 250 mL of acetonitrile, 8 mL of 3.6 N sulfuric acid, and 930 mg of sodium octyl sulfate. Make adjustments if necessar y (see System Suitability under Chromatography (621)).

Standard preparation—Dissolve accurately weighed quantities of USP Atenolol RS $\,$ and USP Chlorthalidone RS $\,$ in a mixture of water and acetonitrile (3:1) to obtain a solution having known concentrations of about 0.25 mg of USP Chlorthalidone RS and 0.25/ mg of USP Atenolol RS per mL, / being the ratio of the labeled amount, in mg, of atenolol to the labeled amount, in mg, of chlorthalidone per Tablet.

Assay preparation—Transfer 10 Tablets to a volumetric flask of such capacity that when filled to volume, a concentration of about 0.5 mg of chlorthalidone per mL is obtained. Add a mixture of water and acetonitrile (1:1) to about half the capacity of the flask, and shake by mechanical means for not less than 15 minutes to disintegrate the Tablets. Dilute with a mixture of water and acetonitrile (1:1) to volume, and mix. Pass a portion of this stock solution through a filter having a 0.5- µm or finer porosity. Transfer 25.0 mL of the clear filtrate to a 50-mL volumetric flask, dilute with water to volume, and mix.

Chromatographic system (see Chromatography (621))—The liquid chromatograph is equipped with a 275-nm detector and a 4.6-mm × 25-cm column that contains packing L1. The flow rate is about 1.7 mL per minute. Chromatograph the Standard preparation, and record the peak responses as directed for Procedure: the relative retention times are about 0.8 for atenolol and 1.0 for chlorthalidone; the resolution, R, between the atenolol and chlorthalidone peaks is not less than 3.0; and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 10 μL) of the Assay preparation and the Standard preparation into the chromatograph, record the chromatograms, and measure the areas for the major peaks. Calculate the quantities, in mg, of

atenolol ($C_{14}H_{22}N_2O_3$) and chlorthalidone ($C_{14}H_{11}ClN_2O_4S$) in each Tablet taken by the formula:

$2C(V/10)(r_U / r_S)$

in which C is the concentration, in mg per mL, of the appropriate USP Reference Standard in the Standard preparation; V is the volume, in mL, of the volumetric flask used to prepare the stock solution for the Assay preparation; and r_U and r_S are the responses for the corresponding analyte obtained from the Assay preparation and the Standard preparation, respectively.

NOTE—If a trailing peak or shoulder is obser ved on the chlorthalidone peak with a relative retention time of not more than 1.1 in the chromatograms of both the Standard preparation and the Assay preparation, sum the areas for the chlorthalidone peak with the trailing peak or shoulder to report the peak responses for chlorthalidone.

Atorvastatin Calcium

 $C_{66}H_{68}CaF_2N_4O_{10} \cdot 3H_2O$

1209.42

C₆₆H₆₈CaF₂N₄O₁₀

1155.34

1 *H*-Pyrrole-1-heptanoic acid, 2-(4-fluorophenyl)- β , δ -dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-, calcium salt (2:1), trihydrate [R-(R*,R*)]-;

Calcium $(\beta R, \delta R)$ -2-(p-fluorophenyl)- β , δ -dihydroxy-5-isopropyl-3phenyl-4-(phenylcarbamoyl)pyrrole-1-heptanoate (1:2), trihydrate [344423-98-9]

Anhydrous [134523-03-8].

DEFINITION

Atorvastatin Calcium contains NLT 98.0% and NMT 102.0% of $C_{66}H_{68}CaF_2N_4O_{10}$, calculated on the anhydrous basis.

IDENTIFICATION

- A. Infrared Absorption (197K)
- B. CALCIUM

Diluent: Methanol, water, and hydrochloric acid (75:25:2) Blank: Diluent

Sample solution: 0.05 mg/mL of Ator vastatin Calcium in Diluent

Analysis

Samples: Sample solution and Blank

Spectrometric conditions

See Spectrophotometry and Light-Scattering (851).) Mode: Atomic absorption spectrophotometry

Analytical wavelength: Calcium emission line at 422.7

Flame: Air-acetylene

Acceptance criteria: The Sample solution exhibits a significant absorption at the calcium emission line at 422.7 nm.

ASSAY

PROCEDURE

Buffer: 3.9 g/L of ammonium acetate in water. Adjust with glacial acetic acid to a pH of 5.0 \pm 0.1.

Solution A: Acetonitrile, stabilizer-free tetrahydrofuran, and Buffer (21:12:67)

Solution B: Acetonitrile, stabilizer-free tetrahydrofuran, and *Buffer* (61:12:27)

Diluent: *N,N*-dimethylformamide

Mobile phase: See the gradient table below.

[NOTE—If necessary, adjust the *Mobile phase* by increasing or decreasing the per centage of acetonitrile or the pH of the ammonium acetate solution to achieve a retention time of 26–34 min for the ator vastatin peak.]

Time (min)	Solution A (%)	Solution B (%)
0	100	0
40	100	0
70	20	80
85	0	100
100	0	100
105	100	0
115	100	0

System suitability solution: 0.05 mg/mL of USP Ator vastatin Calcium RS and 0.06 mg/mL of USP Ator vastatin Related Compound B RS in *Diluent*

Standard solution: 0.4 mg/mL of USP Ator vastatin Calcium RS in *Diluent*. [NOTE—Use sonication if necessary]

Sample solution: 0.4 mg/mL of Ator vastatin Calcium in *Diluent*. [NOTE—Use sonication if necessary.]

Chromatographic system

(See Chromatography (621), System Suitability.)

[NOTE—If significant fronting of the peaks for ator vastatin related compound B and ator vastatin is observed, use the following *Diluent* to prepare the *Sample solution*, *Standard solution*, and *System suitability solution*: acetonitrile, stabilizer-free tetrahydrofuran, and water (1:1:2).]

Mode: LC

Detector: UV 244 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L7

Column temperature: 35° Flow rate: 1.5 mL/min Injection size: 20 μL System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 1.5 between the peaks for ator vastatin related compound B and ator vastatin, *System suitability*

solution

Tailing factor: NMT 1.6, Standard solution

Relative standard deviation: NMT 0.6%, Standard

solution

Samples: Standard solution and Sample solution

Calculate the percentage of C₆₆H₆₈CaF₂N₄O₁₀ in the portion of Atorvastatin Calcium taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response from the Sample solution r_S = peak response from the Standard solution

C_S = concentration of USP Ator vastatin Calcium RS in the *Standard solution* (mg/mL)

C_U = concentration of Ator vastatin Calcium in the Sample solution (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

Inorganic Impurities

HEAVY METALS

Diluent: Methanol and water (9:1)

Sample solution: Dissolve 250 mg of the sample in 30 mL

of *Diluent*

Standard lead solution: Prepared as directed under *Heavy Metals* (231).

Reference solution: Dilute 0.5 mL of the *Standard lead* solution with *Diluent* to 30 mL.

Blank solution: 20 mL of Diluent

Monitor solution: Dissolve 250 mg of Ator vastatin Calcium in 0.5 mL of the *Standard lead solution*, and dilute with *Diluent* to 30 mL.

Analysis

Samples: Sample solution, Reference solution, Blank

solution, and Monitor solution

To each solution, add 2 mL of pH 3.5 Acetate Buffer, prepared as directed under Heavy Metals (231). Mix, add to 1.2 mL of thioacetamide–glycerin base TS, and mix immediately. Pass the solutions through a membrane filter of 0.45-µm pore size. Compare the spots on the filters obtained with the different solutions: the brown color of the spot from the Sample solution is not more intense than that of the spot from the Reference solution. The test is invalid if the Reference solution does not show a slight brown color compared to the Blank solution, or if the color of the Monitor solution is not at least as intense as the color of the Reference solution.

Acceptance criteria: NMT 20 ppm

Organic Impurities

PROCEDURE

Buffer, Solution A, Solution B, Diluent, Mobile phase, System suitability solution, and Chromatographic system: Proceed as directed for the *Assay*.

Standard solution: 1.5 µg/mL each of USP Ator vastatin Related Compound A RS, USP Ator vastatin Related Compound B RS, USP Ator vastatin Related Compound C RS, and USP Ator vastatin Related Compound D RS in Diluent

Sample solution: 1 mg/mL of Ator vastatin Calcium in *Diluent*. [NOTE—Use sonication if necessary.]

Analysis

Samples: Standard solution and Sample solution Chromatograph the Standard solution, and identify the components on the basis of their relative retention times, given in Impurity Table 1.

Calculate the percentage of each of the ator vastatin related compounds A, B, C, and D in the portion of Ator vastatin Calcium taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of the relevant ator vastatin related compound from the *Sample solution*

r_s = peak response of the relevant ator vastatin related compound from the *Standard solution*

C_s = concentration of the relevant ator vastatin related compound in the *Standard solution* (mg/mL)

C_U = concentration of Ator vastatin Calcium in the Sample solution (mg/mL)

Calculate the percentage of any other individual impurity in the portion of Ator vastatin Calcium taken:

Result =
$$(r_U/r_T) \times 100$$

r_U = peak response of any other individual impurity from the *Sample solution*

r_T = sum of the responses of all the peaks from the Sample solution

[NOTE—Disregard any peak observed in the blank; the reporting level for impurities is 0.05%.]

Acceptance criteria

Individual impurities: See *Impurity Table 1*.

Total impurities: NMT 1.0%. [NOTE—This total does not include atorvastatin related compound E, as determined in the test for *Enantiomeric Purity*.]

Impurity Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Atorvastatin related compound A a	0.8	0.3
Atorvastatin related compound B b	0.9	0.3
Atorvastatin	1.0	n/a
Atorvastatin related compound C c	1.2	0.3
Atorvastatin related compound D d, e	2.1	0.1
Any other individual impurity	_	0.1

- ^a Desfluoro impurity.
- ^b 3S,5R isomer.
- ^c Difluoro impurity.
- d Epoxide impurity.
- ^e Atorvastatin related compound D may undergo a transformation equilibrium with its cyclic hemiketal form. The cyclic hemiketal of atorvastatin related compound D elutes about 1-2 min before ator vastatin related compound D. Use the sum of the areas of the two peaks as a peak response for atorvastatin related compound D in the Standard solution and the Sample solution.

SPECIFIC TESTS

ENANTIOMERIC PURITY

Mobile phase: Hexane, dehydrated alcohol, and trifluoroacetic acid (940:60:1)

System suitability stock solution: 5 mg/mL of USP Atorvastatin Calcium RS and 37.5 µg/mL of USP Atorvastatin Related Compound E RS in methanol. [NOTE—Atorvastatin

related compound E is the 3 5,55 enantiomer of ator vastatin.] **System suitability solution:** Transfer 2.0 mL of the *System suitability stock solution* to a 10-mL volumetric flask, add 2.0 mL of dehydrated alcohol, and dilute with hexane to

Sample solution: Transfer 10 mg of Ator vastatin Calcium to a 10-mL volumetric flask, dissolve in 2.0 mL of methanol, add 2.0 mL of dehydrated alcohol, and dilute with hexane to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 244 nm

Column: 4.6-mm × 25-cm; packing L51

Flow rate: 1.0 mL/min Injection size: 20 µL System suitability

Samples: System suitability solution
[NOTE—The elution order of the peaks is ator vastatin related compound E followed by ator vastatin.] **Resolution:** NLT 2.0 between the peaks for ator vastatin

related compound E and ator vastatin

Analysis

Samples: Sample solution

Calculate the percentage of atorvastatin related compound E in the portion of Ator vastatin Calcium taken:

Result =
$$(r_U/r_T) \times 100$$

= peak response for ator vastatin related compound \mathbf{r}_{U} Ε

= sum of the responses of the peaks for r_{T} atorvastatin related compound E and atorvastatin

Acceptance criteria: NMT 0.3% of ator vastatin related

WATER DETERMINATION, Method Ia (921): 3.5%-5.5%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in well-closed containers, and store at room temperature.

• USP Reference Standards $\langle 11 \rangle$

USP Atorvastatin Calcium RS

USP Atorvastatin Related Compound A RS

Desfluoro impurity, or (3 R, 5 R)-7-[3-(phenylcarbamoyl)-2isopropyl-4,5-diphenyl-1H-pyrrol-1-yl]-3,5dihydroxyheptanoic acid, calcium salt.

 $C_{66}H_{70}CaN_4O_{10}$ 1119.38

USP Atorvastatin Related Compound B RS

3*S*,5*R* Isomer, or (3 *S*,5*R*)-7-[3-(phenylcarbamoyl)-5-(4-fluorophenyl)-2-isopropyl-4-phenyl-1*H*-pyrrol-1-yl]-3,5-dihydroxyheptanoic acid, calcium salt.

 $C_{66}H_{68}CaF_2N_4O_{10}$ 1155.34

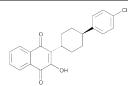
USP Atorvastatin Related Compound C RS

Difluoro impurity, or (3 R,5R)-7-[3-(phenylcarbamoyl)-4,5bis(4-fluorophenyl)-2-isopropyl-1H-pyrrol-1-yl]-3,5dihydroxyheptanoic acid, calcium salt.

C₆₆H₆₆F₄N₄O₁₀ 1191.34

USP Atorvastatin Related Compound D RS

Epoxide impurity, or 3-(4-fluorobenzoyl)-2-isobutyr yl-3-phenyl-oxirane-2-carboxylic acid phenylamide.


C₂₆H₂₂FNO₄ 431.46

USP Atorvastatin Related Compound E RS

35,55 Enantiomer, or $(35,55)^{-}$ 7-[3-(phenylcarbamoyl)-5-(4-fluorophenyl)-2-isopropyl-4-phenyl-1*H*-pyrrol-1-yl]-3,5dihydroxyheptanoic acid, calcium salt.

C₆₆H₆₈CaF₂N₄O₁₀ 1155.34

Atovaquone

C22H19ClO3 366.84

1,4-Naphthalenedione, 2-[4-(4-chlorophenyl)cyclohexyl]-3-hy-

2-[trans-4-(p-Chlorophenyl)cyclohexyl]-3-hydroxy-1,4-naphtho-[95233-18-4]. quinone

» Atovaquone contains not less than 97.5 percent and not more than 101.5 per cent of C₂₂H₁₉ClO₃, calculated on the anhydrous and organic solvent-free basis.

Packaging and storage—Preserve in tight, light-resistant containers.

USP Reference standards (11)—

USP Atovaquone RS

USP Atovaquone Related Compound A RS

cis-2[4-(4-Chlorophenyl)cyclohexyl]-3-hydroxy-1,4naphthoquinone.

Identification-

A: *Infrared Absorption* (197M).

B: The retention time of the major peak in the chromatogram of the Assay preparation corresponds to that in the chromatogram of the Standard preparation, as obtained in the Assay.

Water, Method $I \langle 921 \rangle$: not more than 1.0%. **Residue on ignition** (281): not more than 0.1%.

Heavy metals-

Test preparation—Thoroughly mix 1.0 g of Atovaquone with 0.5 g of magnesium oxide in a silica crucible. Ignite to dull redness until a homogeneous white or grayish-white mass is obtained. If the mixture remains colored after 30 minutes, allow to cool, mix using a fine glass rod, and repeat the ignition. If necessary, repeat the operation. Heat the residue at 800 ° for about 1 hour. Cool, take up the residue in two 5-mL portions