

• **USP REFERENCE STANDARDS (11)**

USP Sodium Fluoride RS

Alpha Lipoic Acid

$C_8H_{14}O_2S_2$ 206.33
Thioctic acid;
1,2-Dithiolane-3-pentanoic acid;
1,2-Dithiolane-3-valeric acid [1077-28-7].

DEFINITION

Alpha Lipoic Acid contains NLT 99.0% and NMT 101.0% of $C_8H_{14}O_2S_2$, calculated on the dried basis.

IDENTIFICATION

Change to read:

- **A.** [▲]_{USP35} The retention time of the peak for alpha lipoic acid of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

Add the following:

- **B. INFRARED ABSORPTION (197K)** [▲]_{USP35}

ASSAY

Change to read:

• PROCEDURE

▲Buffer solution: [▲]_{USP35} 0.68 g/L of monobasic potassium phosphate

▲Mobile phase: Methanol, *Buffer solution*, and acetonitrile (58:46:9). Adjust with phosphoric acid solution (8.3 in 100) to a pH of 3.0–3.1.

▲Standard solution: 1.0 mg/mL of USP Alpha Lipoic Acid RS in [▲]**Mobile phase** [▲]_{USP35}

Sample solution: 1.0 mg/mL of Alpha Lipoic Acid in [▲]**Mobile phase** [▲]_{USP35}

Chromatographic system

(See *Chromatography (621)*, *System Suitability*.)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 250-mm; packing L1

Column temperature: 35°

Flow rate: 1.2 mL/min

Injection size: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT [▲]10,000 [▲]_{USP35} theoretical plates

Tailing factor: NMT 2.0 for the alpha lipoic acid peak

Relative standard deviation: NMT 2.0% for alpha lipoic acid

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of alpha lipoic acid ($C_8H_{14}O_2S_2$) in the portion of Alpha Lipoic Acid taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*
 r_s = peak response from the *Standard solution*
 C_s = concentration of USP Alpha Lipoic Acid RS in the *Standard solution* (mg/mL)
 C_u = concentration of Alpha Lipoic Acid in the *Sample solution* (mg/mL)

Acceptance criteria: 99.0%–101.0% on the dried basis

IMPURITIES

- **RESIDUE ON IGNITION (281):** Less than 0.1%
- **HEAVY METALS, Method II (231):** NMT 10 ppm

Change to read:

• CHROMATOGRAPHIC PURITY, PROCEDURE 1

Buffer solution, Mobile phase, Standard solution,
[▲]_{USP35} **Sample solution, and Chromatographic system:** Proceed as directed in the *Assay*.

▲Diluted standard solution: Dilute the *Standard solution* (1 in 1000) with *Mobile phase*.

System suitability

Sample: *Diluted standard solution*

Suitability requirements

Signal-to-noise ratio: NLT 10

Relative standard deviation: NMT 10.0% [▲]_{USP35}

Analysis

Sample: *Sample solution*

Calculate the percentage of each impurity in the portion of Alpha Lipoic Acid taken:

$$\text{Result} = (r_u/r_t) \times 100$$

r_u = peak response of each individual impurity from the *Sample solution*

r_t = sum of the responses of all the peaks from the *Sample solution*

Acceptance criteria

Individual impurities: NMT 0.1%

Total impurities: NMT 2.0%

• CHROMATOGRAPHIC PURITY, PROCEDURE 2

[NOTE—Use low-actinic glassware.]

Standard solution A: 40.0 mg/mL of USP Alpha Lipoic Acid RS in dimethylformamide

Standard solution B: 20.0 mg/mL of USP Alpha Lipoic Acid RS in dimethylformamide, prepared from the dilution of *Standard solution A*

Standard solution C: 10.0 mg/mL of USP Alpha Lipoic Acid RS in dimethylformamide, prepared from the dilution of *Standard solution B*

Sample solution: 40.0 mg/mL of Alpha Lipoic Acid in dimethylformamide

Chromatographic system

(See *Chromatography (621)*, *Thin-Layer Chromatography*.)

Mode: TLC

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture

Application volume: 5 μ L

Developing solvent system: *n*-Propyl alcohol, ethyl acetate, water, and 25% ammonia water (40:40:10:5). Allow the chamber to become saturated for at least 1 h.

Iodine vapor-saturated chamber: Transfer 4 g of iodine crystals to a small watch glass, and place in a chromatographic chamber. Allow the chamber to become saturated for at least 2 h.

Analysis

Samples: *Standard solution A, Standard solution B,*

Standard solution C, and Sample solution

Proceed as directed in the chapter, except to develop until the solvent front has moved 10 cm. Remove the plate, and allow to air-dry until the ammonia disappears completely. Heat at 50° for 20 min, cool the plate, and place in the *Iodine vapor-saturated chamber* until the spots are visible. The R_f value for the alpha lipoic acid

spot is 0.25–0.30 and for the polymeric lipoic acid spot is 0.

Acceptance criteria: No spot other than the alpha lipoic acid spot from the *Sample solution* is more intense than the spot at $R_F = 0$ from *Standard solution A*.

SPECIFIC TESTS

- **MELTING RANGE OR TEMPERATURE** **(741)**: 60.0°–62.0°
- **OPTICAL ROTATION**, *Specific Rotation* **(781S)**
Sample solution: 50 mg/mL of Alpha Lipoic Acid, in dehydrated alcohol
Acceptance criteria: –1.0° to +1.0°
- **LOSS ON DRYING** **(731)**: Dry a sample in vacuum at 40° for 3 h; it loses NMT 0.2% of its weight.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE**: Preserve in well-closed containers.
- **USP REFERENCE STANDARDS** **(11)**
USP Alpha Lipoic Acid RS

Alpha Lipoic Acid Capsules

DEFINITION

Alpha Lipoic Acid Capsules contain NLT 90.0% and NMT 115.0% of the labeled amount of $C_8H_{14}O_2S_2$.

IDENTIFICATION

- The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the test for *Content of Alpha Lipoic Acid*.

STRENGTH

• CONTENT OF ALPHA LIPOIC ACID

Mobile phase: 0.025 M phosphoric acid and acetonitrile (62:38)

Standard solution: 0.05 mg/mL of USP Alpha Lipoic Acid RS in acetonitrile and water (1:1)

Sample solution A (for hard gelatin Capsules): Empty and mix thoroughly the contents of NLT 20 Capsules. Transfer a portion of the powder, equivalent to 100 mg of alpha lipoic acid, to a suitable container. Add 70 mL of a mixture of acetonitrile and water (1:1), and shake for 45 min by mechanical means. Transfer to a 100-mL volumetric flask, dilute with the mixture of acetonitrile and water (1:1) to volume, and filter a portion of this preparation, discarding the first 5 mL of the filtrate. Transfer 5.0 mL of the remaining filtrate to a 100-mL volumetric flask, and dilute with acetonitrile and water (1:1) to volume.

Sample solution B (for soft gelatin Capsules): Using a suitable cutting instrument, open a number of Capsules equivalent to 500 mg of alpha lipoic acid from a counted number of opened Capsules. Transfer the contents and the shells to a suitable container with stopper, add 500.0 mL of a mixture of acetonitrile and water (1:1), and shake for 45 min by mechanical means. Filter a portion of this preparation, discarding the first 5 mL of the filtrate. Transfer 5.0 mL of the remaining filtrate to a 100-mL volumetric flask, and dilute with acetonitrile and water (1:1) to volume.

Chromatographic system

(See *Chromatography* **(621)**, *System Suitability*.)

Mode: LC

Detector: UV 220 nm

Column: 3.9-mm × 30-cm; packing L1

Flow rate: 1.5 mL/min

Injection size: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 1300 theoretical plates

Tailing factor: NMT 1.2 for alpha lipoic acid

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard solution* and appropriate *Sample solution*

Calculate the percentage of alpha lipoic acid in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from *Sample solution A* or *Sample solution B*

r_S = peak response from the *Standard solution*

C_S = concentration of USP Alpha Lipoic Acid RS in the *Standard solution* (mg/mL)

C_U = nominal concentration of alpha lipoic acid in *Sample solution A* or *Sample solution B* (mg/mL)

Acceptance criteria: 90.0%–115.0%

PERFORMANCE TESTS

• DISINTEGRATION AND DISSOLUTION OF DIETARY SUPPLEMENTS

(2040): Meet the requirements for *Dissolution*

Medium: Water; 900 mL

Apparatus 1 (for hard gelatin Capsules): 100 rpm

Apparatus 2 (for soft gelatin Capsules): 75 rpm

Time: 60 min

Standard solution: 1 mg/mL of USP Alpha Lipoic Acid RS in a mixture of acetonitrile and water (1:1). Dilute with water to obtain a concentration of 0.02 mg/mL.

Sample solution: Withdraw a portion of the solution under test, and filter, discarding the first portion of the filtrate. Transfer an aliquot to a volumetric flask, and dilute with water to volume to obtain a solution having an expected concentration of 0.02 mg/mL of alpha lipoic acid.

Mobile phase and Chromatographic system: Proceed as directed in the test for *Content of Alpha Lipoic Acid*.

Injection size: 50 μ L

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of alpha lipoic acid ($C_8H_{14}O_2S_2$) dissolved:

$$\text{Result} = (r_U/r_S) \times (V \times C \times D/L) \times 100$$

r_U = peak area from the *Sample solution*

r_S = peak area from the *Standard solution*

V = volume of dissolution **Medium**, 900 mL

C = concentration of USP Alpha Lipoic Acid RS in the *Standard solution* (mg/mL)

D = dilution factor of the sample

L = label claim of alpha lipoic acid (mg/Capsule)

Tolerances: NLT 70% of the labeled amount of $C_8H_{14}O_2S_2$ is dissolved.

• WEIGHT VARIATION OF DIETARY SUPPLEMENTS

(2091): Meet the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE**: Preserve in well-closed containers.