(4) Determine the absorption spectrum of a solution of Nitrazepam in ethanol (99.5) (1 in 100,000) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Nitrazepam in 20 mL of acetone: the solution is clear and pale yellow to light yellow in color.

- (2) Heavy metals—Proceed with 1.0 g of Nitrazepam according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).
- (3) Arsenic—Prepare the test solution with 1.0 g of Nitrazepam according to Method 3, and perform the test using Apparatus B (not more than 2 ppm).
- (4) Related substances—Dissolve 0.25 g of Nitrazepam in a 10 mL of mixture of methanol and chloroform (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and chloroform (1:1) to make exactly 20 mL, pipet 2 mL of this solution, add a mixture of methanol and chloroform (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot 10 µL each of the sample solution and the standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of nitromethane and ethyl acetate (17:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot from the sample solution are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.4 g of Nitrazepam, previously dried, and dissolve in 40 mL of acetic acid (100). Titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 28.127 mg of $C_{15}H_{11}N_3O_3$

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Nitroglycerin Tablets

ニトログリセリン錠

Nitroglycerin Tablets contain not less than 80% and not more than 120% of the labeled amount of nitroglycerin ($C_3H_5N_3O_9$: 227.09).

Method of preparation Prepare as directed under Tablets, with nitroglycerin.

Identification (1) Weigh a quantity of powdered Nitroglycerin Tablets, equivalent to 6 mg of nitroglycerin $(C_3H_5N_3O_9)$ according to the labeled amount, shake

thoroughly with 12 mL of diethyl ether, filter, and use the filtrate as the sample solution. Evaporate 5 mL of the sample solution, dissolve the residue in 1 to 2 drops of sulfuric acid, and add 1 drop of diphenylamine TS: a deep blue color develops.

(2) Evaporate 5 mL of the sample solution obtained in (1), add 5 drops of sodium hydroxide TS, heat over a low flame, and concentrate to about 0.1 mL. Cool, heat the residue with 0.02 g of potassium hydrogen sulfate: the odor of acrolein is perceptible.

Purity Free nitrate ion—Transfer an accurately measured quantity of powdered Nitroglycerin Tablets, equivalent to $0.020\,g$ of nitroglycerin ($C_3H_5N_3O_9$) according to the labeled amount, to a separator, add 40 mL of isopropylether and 40 mL of water, shake for 10 minutes, and allow the layers to separate. Collect the aqueous layer, add 40 mL of isopropylether, shake for 10 minutes, collect the aqueous layer, filter, and use the filtrate as the sample solution. Separately, transfer 10 mL of Standard Nitric Acid Solution to a separator, add 30 mL of water and 40 mL of the isopropyl ether layer of the first extraction of the sample solution, shake for 10 minutes, continue the procedure in the same manner as the sample solution, and use the solution so obtained as the standard solution. Transfer 20 mL each of the sample solution and the standard solution to Nessler tubes, respectively, shake well with 30 mL of water and 0.06 g of Griess-Romijin's nitric acid reagent, allow to stand for 30 minutes, and observe the tubes horizontally: the sample solution has no more color than the standard solution.

Content uniformity Transfer 1 tablet of Nitroglycerin Tablets to a glass-stoppered centrifuge tube, and add exactly V mL of acetic acid (100) to provide a solution containing about 30 µg of nitroglycerin (C₃H₅N₃O₉) per ml. Shake vigorously for 1 hour, and after disintegrating the tablet, centrifuge, and use the supernatant liquid as the sample solution. When the tablet does not disintegrate during this procedure, transfer 1 tablet of Nitroglycerin Tablets to a glassstoppered centrifuge tube, wet the tablet with 0.05 mL of acetic acid (100), and grind down it with a glass rod. While rinsing the glass rod, add acetic acid (100) to make exactly VmL of a solution containing about 30 μ g of nitroglycerin $(C_3H_5N_3O_9)$ per ml. Shake for 1 hour, centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 0.09 g of potassium nitrate, previously dried at 105°C for 4 hours, dissolve in 5 mL of water, and add acetic acid (100) to make exactly 100 mL. Pipet 5 mL of the solution, add acetic acid (100) to make exactly 100 mL. and use this solution as the standard solution. Measure exactly 2 mL each of the sample solution and the standard solution, add 2 mL each of salicylic acid TS shake, allow to stand for 15 minutes, and add 10 mL each of water. Render the solution alkaline with about 12 mL of a solution of sodium hydroxide (2 in 5) while cooling in ice, and add water to make exactly 50 mL. Perform the test with these solutions as directed under the Ultraviolet-visible Spectrophotometry, using a solution, prepared with 2 mL of acetic acid (100) in the same manner, as the blank. Determine the absorbances, $A_{\rm T}$ and $A_{\rm S}$, of the subsequent solutions of the sample solution and the standard solution at 410 nm, respectively.

> Amount (mg) of nitroglycerin ($C_3H_5N_3O_9$) = amount (mg) of potassium nitrate $\times 0.7487 \times \frac{A_T}{A_S} \times \frac{V}{2000}$

Calculate the average content from the contents of 10 tablets: it meets the requirements of the test when each content deviates from the average content by not more than 25%. When there is 1 tablet showing a deviation exceeding 25% and not exceeding 30%, determine the content of an additional 20 tablets in the same manner. Calculate the 30 deviations from the new average of all 30 tablets: it meets the requirements of the test when 1 tablet may deviate from the average content by between 25% and 30%, but no tablet deviates by more than 30%.

Disintegration test Nitroglycerin Tablets meet the requirements of the Disintegration Test, provided that the time limit of the test is 2 minutes, and the use of the disks is omitted

Assay Weigh accurately and disintegrate, by soft pressing, not less than 20 Nitroglycerin Tablets. Weigh accurately a portion of the powder, equivalent to about 3.5 mg of nitroglycerin (C₃H₅N₃O₉), add exactly 50 mL of acetic acid (100), shake for 1 hour, filter, and use this filtrate as the sample solution. Separately, weigh accurately about 0.09 g of potassium nitrate, previously dried at 105°C for 4 hours, dissolve in 5 mL of water, and add acetic acid (100) to make exactly 100 mL. Pipet 10 mL of the solution, add acetic acid (100) to make exactly 100 mL, and use this solution as the standard solution. Measure exactly 2 mL each of the sample solution and the standard solution, to each solution add 2 mL of salicylic acid TS, shake, allow to stand for 15 minutes, and add 10 mL of water. Render the solution alkaline with about 12 mL of a solution of sodium hydroxide (2 in 5) while cooling in ice, and add water to make exactly 50 mL. Perform the test with these solutions as directed under the Ultraviolet-visible Spectrophotometry, using a solution, prepared with 2 mL of acetic acid (100) in the same manner, as the blank. Determine the absorbances, A_T and A_S , of the subsequent solutions of the sample solution and the standard solution at 410 nm, respectively.

> Amount (mg) of nitroglycerin ($C_3H_5N_3O_9$) = amount (mg) of potassium nitrate $\times 0.7487 \times \frac{A_T}{A_S} \times \frac{1}{20}$

Containers and storage Containers—Tight containers. Storage—Light-resistant, and not exceeding 20°C.

Nitrous Oxide

亜酸化窒素

N₂O: 44.01

Nitrous Oxide contains not less than 97.0 vol% of N_2O .

Description Nitrous Oxide is a colorless gas at room temperature and at atmospheric pressure, and is odorless.

1 mL of Nitrous Oxide dissolves in 1.5 mL of water and in 0.4 mL of ethanol (95) at 20°C and at a pressure of 101.3 kPa. It is soluble in diethyl ether and in fatty oils.

1000 mL of Nitrous Oxide at 0°C and at a pressure of 101.3 kPa weighs about 1.96 g.

Identification (1) A glowing splinter of wood held in Nitrous Oxide: it bursts into flame immediately.

(2) Transfer 1 mL each of Nitrous Oxide and nitrous oxide directly from metal cylinders with a pressure-reducing valve to gas measuring tubes or syringes for gas chromatography, using a polyvinyl chloride induction tube. Perform the test with these gases as directed under the Gas Chromatography according to the conditions of the Assay: the retention time of the main peak from Nitrous Oxide coincides with that of nitrous oxide.

Purity Maintain the containers of Nitrous Oxide between 18°C and 22°C for more than 6 hours before the test, and correct the volume at 20°C and at a pressure of 101.3 kPa.

- (1) Acid or alkali—To 400 mL of freshly boiled and cooled water add 0.3 mL of methyl red TS and 0.3 mL of bromothymol blue TS, and boil for 5 minutes. Transfer 50 mL of this solution to each of three Nessler tubes marked A, B and C. Add 0.10 mL of 0.01 mol/L hydrochloric acid VS to tube A, 0.20 mL of 0.01 mol/L hydrochloric acid VS to tube B, stopper each of the tubes, and cool. Pass 100 mL of Nitrous Oxide through the solution in tube A for 15 minutes, employing delivery tube with an orifice approximately 1 mm in diameter and extending to within 2 mm of the bottom of the Nessler tube: the color of the solution in tube A is not deeper orange-red than that of the solution in tube B and not deeper yellow-green than that of the solution in tube C.
- (2) Carbon dioxide—Pass 1000 mL of Nitrous Oxide through 50 mL of barium hydroxide TS in a Nessler tube, in the same manner as directed in (1): any turbidity produced does not exceed that produced in the following control solution.

Control solution: To 50 mL of barium hydroxide TS in a Nessler tube add 1 mL of a solution of 0.1 g of sodium hydrogen carbonate in 100 mL of freshly boiled and cooled water.

- (3) Oxidizing substances—Transfer 15 mL of potassium iodide-starch TS to each of two Nessler tubes marked A and B, add 1 drop of acetic acid (100) to each of the tubes, shake, and use these as solution A and solution B, respectively. Pass 2000 mL of Nitrous Oxide through solution A for 30 minutes in the same manner as directed in (1): the color of solution A is the same as that of the stoppered, untreated solution B.
- (4) Potassium permanganate-reducing substance—Pour 50 mL of water into each of two Nessler tubes marked A and B, add 0.10 mL of 0.02 mol/L potassium permanganate VS to each of the tubes, and use these as solution A and solution B, respectively. Pass 1000 mL of Nitrous Oxide through solution A in the manner as directed in (1): the color of solution A is the same as that of solution B.
- (5) Chloride—Pour 50 mL of water into each of two Nessler tubes marked A and B, add 0.5 mL of silver nitrate TS to each of the tubes, shake, and use these as solution A and solution B, respectively. Pass 1000 mL of Nitrous Oxide through solution A in the same manner as directed in (1): the turbidity of solution A is the same as that of solution B.
- (6) Carbon monoxide—Introduce 5.0 mL of Nitrous Oxide into a gas-cylinder or a syringe for gas chromatography from a metal cylinder holding gas under pressure and fitted with a pressure-reducing valve, through a directly connected polyvinyl tube. Perform the test with this according to the Gas Chromatography under the following