ethylenediamine tetraacetate VS consumed deduct the volume of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS corresponding to the content of calcium oxide (CaO) obtained in the Purity (5).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 2.0152 mg of MgO

Each mg of calcium oxide (CaO)

= 0.36 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

Containers and storage Containers—Well-closed containers.

Magnesium Oxide

酸化マグネシウム

MgO: 40.30

Magnesium Oxide, when ignited, contains not less than 96.0% of MgO.

When 5 g of Magnesium Oxide has a volume not more than 30 mL, it may be labeled heavy magnesium oxide.

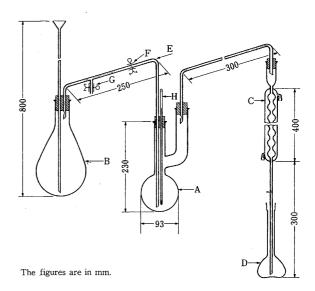
Description Magnesium Oxide occurs as a white powder or granules. It is odorless.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

It dissolves in dilute hydrochloric acid.

It absorbs moisture and carbon dioxide in air.

Identification A solution of Magnesium Oxide in dilute hydrochloric acid (1 in 50) responds to the Qualitative Tests for magnesium salt.


- **Purity** (1) Alkali and soluble salts—Transfer 2.0 g of Magnesium Oxide to a beaker, add 100 mL of water, cover the beaker with a watch-glass, heat on a water bath for 5 minutes, and filter immediately. After cooling, to 50 mL of the filtrate add 2 drops of methyl red TS and 2.0 mL of 0.05 mol/L sulfuric acid VS: a red color develops. Evaporate 25 mL of the remaining filtrate to dryness, and dry the residue at 105°C for 1 hour: the mass of the residue is not more than 0.010 g.
- (2) Carbonate—Boil 0.10 g of Magnesium Oxide with 5 mL of water, cool, and add 5 mL of acetic acid (31): almost no effervescence occurs.
- (3) Heavy metals—Dissolve 1.0 g of Magnesium Oxide in 20 mL of dilute hydrochloric acid, and evaporate on a water bath to dryness. Dissolve the residue in 35 mL of water, add 1 drop of phenolphthalein TS, neutralize with ammonia TS, add 2 mL of dilute acetic acid, and filter, if necessary. Wash the filter paper with water, add water to the combined washing and the filtrate to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 20 mL of dilute hydrochloric acid add 1 drop of phenolphthalein TS, neutralize with ammonia TS, and add 2 mL of dilute acetic acid, 4.0 mL of Standard Lead Solution and water to make 50 mL (not more than 40 ppm).

- (4) Iron—Prepare the test solution with 0.040 g of Magnesium Oxide according to Method 1, and perform the test according to Method A. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 500 ppm).
- (5) Calcium oxide—Weigh accurately about 0.25 g of Magnesium Oxide, previously ignited, dissolve in 6 mL of dilute hydrochloric acid by heating. Cool, add 300 mL of water and 3 mL of a solution of L-tartaric acid (1 in 5), then add 10 mL of a solution of 2,2′,2″-nitrilotrisethanol (3 in 10) and 10 mL of 8 mol/L potassium hydroxide TS, allow to stand for 5 minutes, and titrate with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the color of the solution changes from red-purple to blue (indicator: 0.1 g of NN indicator). Perform a blank determination, and make any necessary correction.

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 0.5608 mg of CaO

The mass of calcium oxide (CaO: 56.08) is not more than 1.5%.

- (6) Arsenic—Dissolve 0.20 g of Magnesium Oxide in 5 mL of dilute hydrochloric acid, and perform the test with this solution as the test solution using Apparatus B (not more than 10 ppm).
- (7) Acid-insoluble substances—Mix 2.0 g of Magnesium Oxide with 75 mL of water, add 12 mL of hydrochloric acid dropwise, while shaking, and boil for 5 minutes. Collect the insoluble residue using filter paper for assay, wash well with water until the last washing shows no turbidity with silver nitrate TS, and ignite the residue together with the filter paper: the mass of the ignited residue does not more than 2.0 mg.
- (8) Fluoride—(i) Apparatus: Use a hard glass apparatus as illustrated in the figure. Ground-glass joints may be used.

- A: Distilling flask of about 300-mL capacity.
- B: Steam generator of about 1000-mL capacity, containing a few boiling tips to prevent bumping
- C: Condenser
- D: Receiver: 200-mL volumetric flask
- E: Steam-introducing tube having an internal diameter of about 8 mm

584

F,G: Rubber tube with a clamp

H: Thermometer

(ii) Procedure: Transfer 5.0 g of Natural Aluminum Silicate to the distilling flask A with the aid of 20 mL of water, add about 1 g of glass wool and 50 mL of diluted purified sulfuric acid (1 in 2), and connect A to the distillation apparatus, previously washed with steam streamed through the steam introducing tube E. Connect the condenser C with the receiver D containing 10 mL of 0.01 mol/L sodium hydroxide VS and 10 mL of water so that the lower end of C is immersed in the solution. Heat A gradually until the temperature of the solution in A reaches 130°C, then open the rubber tube F, close the rubber tube G, boil water in the steam generator B vigorously, and introduce the generated steam into F. Simultaneously, heat A, and maintain the temperature of the solution in A between 135°C and 145°C. Adjust the distilling rate to about 10 mL per minute. Collect about 170 mL of the distillate, then stop the distillation, wash C with a small quantity of water, combine the washings with the distillate, add water to make exactly 200 mL, and use this solution as the test solution. Perform the test with the test solution as directed in the procedure of determination for fluoride under the Oxygen Flask Combustion Method. No corrective solution is used in this procedure.

Amount (mg) of fluoride (F: 19.00) in the test solution = amount (mg) of fluoride in 5 mL of

the standard solution

$$\times \frac{A_{\rm T}}{A_{\rm S}} \times \frac{200}{V}$$

The content of fluoride (F) is not more than 0.08%.

Loss on ignition Not more than 10% (0.25 g, 900°C, constant mass).

Assay Ignite Magnesium Oxide to constant mass at 900°C, weigh accurately about 0.2 g of the residue, dissolve in 10 mL of water and 4.0 mL of dilute hydrochloric acid, and add water to make exactly 100 mL. Pipet 25 mL of this solution, add 50 mL of water and 5 mL of ammonia-ammonium chloride buffer solution, pH 10.7, and titrate with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 0.04 g of eriochrome black T-sodium chloride indicator). Perform a blank determination, and make any necessary correction.

From the volume of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS consumed, deduct the volume of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS corresponding to the content of calcium oxide (CaO) obtained in the Purity (5).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

 $= 2.0152 \,\mathrm{mg}$ of MgO

Each mg of calcium oxide (CaO)

= 0.36 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

Containers and storage Containers—Tight containers.

Magnesium Silicate

ケイ酸マグネシウム

Magnesium Silicate contains not less than 45.0% of silicon dioxide (SiO₂: 60.08) and not less than 20.0% of magnesium oxide (MgO: 40.30), and the ratio of percentage (%) of magnesium oxide to silicon dioxide is not less than 2.2 and not more than 2.5.

Description Magnesium Silicate occurs as a white, fine powder. It is odorless and tasteless.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

Identification (1) Mix 0.5 g of Magnesium Silicate with 10 mL of dilute hydrochloric acid, filter, and neutralize the filtrate with ammonia TS: the solution responds to the Qualitative Tests for magnesium salt.

(2) Prepare a bead by fusing ammonium sodium hydrogenphosphate tetrahydrate on a platinum loop. Place the bead in contact with Magnesium Silicate, and fuse again: an infusible matter appears in the bead, which changes to an opaque bead with a web-like structure upon cooling.

Purity (1) Soluble salts—Add 150 mL of water to 10.0 g of Magnesium Silicate, heat on a water bath for 60 minutes with occasional shaking, then cool, dilute with water to 150 mL, and centrifuge. Dilute 75 mL of the resultant transparent liquid with water to 100 mL, and use this solution as the sample solution. Evaporate 25 mL of the sample solution on a water bath to dryness, and ignite the residue at 700°C for 2 hours: the mass of the ignited residue is not more than 0.02 g.

(2) Alkali—To 20 mL of the sample solution obtained in (1) add 2 drops of phenolphthalein TS and 1.0 mL of 0.1 mol/L hydrochloric acid VS: no color develops.

(3) Chloride—Take 10 mL of the sample solution obtained in (1), add 6 mL of dilute nitric acid, dilute with water to 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.75 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.053%).

(4) Sulfate—To the residue obtained in (1) add about 3 mL of dilute hydrochloric acid, and heat on a water bath for 10 minutes. Add 30 mL of water, filter, wash the residue on the filter with water, combine the washings with the filtrate, and dilute to 50 mL with water. To 4 mL of the solution add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.480%).

(5) Heavy metals—To 1.0 g of Magnesium Silicate add 20 mL of water and 3 mL of hydrochloric acid, and boil for 2 minutes. Filter, and wash the residue on the filter with two 5-mL portions of water. Evaporate the combined filtrate and washings on a water bath to dryness, add 2 mL of dilute acetic acid to the residue, warm until solution is complete, filter, if necessary, add water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 3.0 mL of Standard Lead Solution, 2 mL of dilute acetic acid and water to make 50 mL (not more than 30 ppm).