necessary, wash down the solution in the bottle with a small quantity of water. Add 1 drop of methyl orange TS, and after neutralizing with ammonia TS, ammonia solution (28) or dilute hydrochloric acid, add 5 mL of diluted hydrochloric acid (1 in 2) and 5 mL of potassium iodide TS, and allow to stand for 2 to 3 minutes. Add 5 mL of acidic tin (II) chloride TS, and allow to stand for 10 minutes. Then add water to make 40 mL, add 2 g of zinc for arsenic analysis, and immediately connect the rubber stopper H fitted with B and C with the generator bottle A. Transfer 5 mL of the absorbing solution for hydrogen arsenide to the absorber tube D, insert the tip of C to the bottom of the absorber tube D, then immerse the generator bottle A up to the shoulder in water maintained at 25°C, and allow to stand for 1 hour. Disconnect the absorber tube, add pyridine to make 5 mL, if necessary, and observe the color of the absorbing solution: the color produced is not more intense than the standard color. Preparation of standard color: Measure accurately 2 mL of Standard Arsenic Solution in the generator bottle A. Add 5 mL of diluted hydrochloric acid (1 in 2) and 5 mL of potassium iodide TS, and allow to stand for 2 to 3 minutes. Add 5 mL of acidic tin (II) chloride TS, allow to stand at room temperature for 10 minutes, and then proceed as directed above. The color produced corresponds to $2 \mu g$ of arsenic (III) trioxide (As₂O₃) and is used as the standard. Note: Apparatus, reagents and test solutions used in the test should contain little or no arsenic. If necessary, perform a blank determination. # 5. Atomic Absorption Spectrophotometry Atomic absorption spectrophotometry is a method to determine the amount or the concentration of an element in a sample specimen being examined, by utilizing the phenomenon that atoms being in the ground state absorb the light of specific wavelength, characteristic of the respective atom, when the light passes through an atomic vapor layer of the element to be determined. #### **Apparatus** Usually, the apparatus consists of a light source, a sample atomizer, a spectroscope, a photometer and a recording system. Some are equipped with a background compensation system. As a light source, usually a hollow cathode lamp specified for each element is used and sometimes a discharge lamp is also used. There are three types of sample atomizer: the flame type, the electrothermal type, and the cold-vapor type. The first one is composed of a burner and a gas-flow regulator, the second one is composed of an electric furnace and a power source, and the third one is composed of a mercury generator and an absorption cell. The third one is further classified into two subtypes, which differ in the atomizing method for mercury containing-compounds: one utilizes chemical reduction-vaporization and the other utilizes a thermal reduction-vaporization method. For the selection of an appropriate analytical wavelength in a spectroscope, a grating for light diffraction or an interference filter can be used. A recording system is composed of a display and a recording device. A background compensation system is employed for the correction of atmospheric effects on the measuring system. Several principles can be utilized for background compensation, using continuous spectrum sources, the Zeeman splitted spectrum, the nonresonance spectrum, or self-inversion phenomena. Another special options such as a hydride generator and a heating cell, can also be used for analyzing such as selenium. As a hydride generator, a batch method and/or a continuous flow method can be applied. While as a heating cell, there are two kinds of cell: one for heating by flame and the other for heating by electric furnace. # Procedure Unless otherwise specified, proceed by any of the following methods. - (1) Flame type—Fit the specific light source to the lamp housing and switch on the instrument. After lighting the lamp and selecting the analytical wavelength specified in the monograph, set an appropriate electric current and slitwidth. Next, a mixture of a combustible gas and a supporting gas is ignited and the gas flow rate and/or pressure should be adjusted to optimum conditions. The zero adjustment of the detecting system must be done through nebulizing the blank solvent into the flame. After setting up the measuring system, the sample solution prepared by the specified procedure is introduced into the flame and the light absorption at the characteristic wavelength of the element to be determined is measured. - (2) Electrothermal type—Fit the specific light source to the lamp housing and switch on the instrument. After lighting the lamp and selecting the analytical wavelength specified in the monograph, set an appropriate electric current and slit-width. Further, set an electric furnace to the appropriate temperature, electric current, and heating program, as directed separately in the monograph. When a suitable amount of sample is injected into the heated furnace with an appropriate stream of inert gas, the sample is dried and ashed, simultaneously with atomization of the metallic compound included in the specimen. The atomic absorption specified is observed and the intensity of absorption is measured. Details of the sample preparation method are provided separately in the monograph. - (3) Cold vapor type—Fit the mercury lamp to the lamp housing and switch on the instrument. After lighting the lamp and selecting the analytical wavelength specified in the monograph, set an appropriate electric current and a slitwidth. In the chemical atomization-vaporization method, a mercury containing compound in the sample solution, prepared by the specified procedure, is chemically reduced to metallic mercury by adding a proper reducing reagent to the closed vessel and the generated mercury is vaporized and introduced into the absorption cell with a flow of inert gas. In the thermal atomization-vaporization method, the sample specimen on a quartz dish is heated electrically and the generated atomic mercury is vaporized and introduced into the absorption cell with a flow of inert gas. Thus, in both methods, the generated atomic mercury is carried into the absorption cell as cold vapor and the intensity of the characteristic atomic absorption of mercury is measured. # Determination Usually, proceed by any of the following methods. In the determination, the possibility of interference for various reasons and the background effect must be considered and avoided if possible. - (1) Calibration curve method—Prepare standard solutions at more than 3 concentration levels, measure the specific absorption due to these standard solutions, and prepare the calibration curve of the atomic absorption against the concentration. Then measure the atomic absorption due to the sample specimen, in which the concentration of the element to be determined should be adjusted to be within the concentration range of the standard solutions, and determine the amount or the concentration of the element to be examined using the calibration curve. - (2) Standard addition method—To equal volumes of more than 3 sample solutions, prepared as directed in the monograph, add a measured quantity of the standard solutions to produce a series of solutions containing increasing amounts of the element to be examined, and further add a solvent to make up a constant volume. Measure the atomic absorption for the respective solutions, and plot the obtained values on a graph with the added amount or the concentration on the abscissa and the absorbance on the ordinate. Extrapolate the linear plot obtained by linking the data points, and determine the amount or the concentration of the element to be examined from the distance between the origin and the point where the plot intersects with the abscissa. This method is available only when the calibration curve obtained by Method (1) is confirmed to be linear and to pass through the origin. - (3) Internal standard method—Prepare a series of standard solutions of the element to be determined, each containing a definite amount of the internal standard element directed in the monograph. For these standard solutions, measure the atomic absorption due to the standard element and the internal standard element separately at the respective wavelengths under the same operating conditions, and obtain the ratio of absorbance by the standard element to that by the internal standard element. Prepare a calibration curve for the element to be determined, with the amount or the concentration of the standard element on the abscissa and the above-mentioned ratio of the absorbance on the ordinate. Then prepare sample solutions, adding the same amount of the internal standard element as contained in the standard solutions. Measure the ratio of the absorbance due to the element to be determined to that due to the internal standard element under the same conditions as employed for preparing the calibration curve, and determine the amount or the concentration of the element being examined by using the calibration curve. Note: Reagents, test solutions, and gases used in this test should not interfere in any process of the measurement. # 6. Bacterial Endotoxins Test The Bacterial Endotoxins Test is a test to detect or quantify bacterial endotoxins of gram-negative bacterial origin using a lysate reagent prepared from blood corpuscle extracts of horseshoe crab (*Limulus polyphemus or Tachypleus tridentatus*). There are two types of techniques for this test: the gel-clot techniques, which are based on gel formation by the reaction of the lysate TS with endotoxins, and the photometric techniques, which are based on endotoxin-induced optical changes of the lysate TS. The latter include turbidimetric techniques, which are based on the change in lysate TS turbidity during gel formation, and chromogenic techniques, which are based on the development of color after cleavage of a synthetic peptide-chromogen complex. Proceed by any one of these techniques for the test. In the event of doubt or dispute, the final decision is made based on the gel-clot techniques, unless otherwise indicated. The test is carried out in a manner that avoids endotoxin contamination. #### **Apparatus** Depyrogenate all glassware and other heat-stable materials in a hot-air oven using a validated process. Commonly used minimum time and temperature settings are 30 minutes at 250°C. If employing plastic apparatus, such as multi-well plates and tips for micropipettes, use only that which has been shown to be free of detectable endotoxin and which does not interfere with the test. #### Preparation of Standard Endotoxin Stock Solution Prepare Standard Endotoxin Stock Solution by dissolving Endotoxin 10000 Reference Standard or Endotoxin 100 Reference Standard in water for bacterial endotoxins test (BET). Endotoxin is expressed in Endotoxin Units (EU). One EU is equal to one International Unit (IU) of endotoxin. ## Preparation of Standard Endotoxin Solution After mixing Standard Endotoxin Stock Solution thoroughly, prepare appropriate serial dilutions of Standard Endotoxin Solution, using water for BET. Use dilutions as soon as possible to avoid loss of activity by adsorption. #### Preparation of sample solutions Unless otherwise specified, prepare sample solutions by dissolving or diluting drugs, using water for BET. Sample solutions for containers for medicines should be prepared according to other specified procedures. If necessary, adjust the pH of the solution to be examined so that the pH of the mixture of the lysate TS and sample solution falls within the specified pH range for the lysate reagent to be used. This usually applies to a sample solution with a pH in the range of 6.0 to 8.0. TSs or solutions used for adjustment of pH may be prepared using water for BET, and then stored in containers free of detectable endotoxin. ## **Determination of Maximum Valid Dilution** The Maximum Valid Dilution (MVD) is the maximum allowable dilution of a sample solution at which the endotoxin limit can be determined. Determine the MVD from the following equation: $$MVD = \frac{\text{Endotoxin limit}}{\times \text{Concentration of sample solution}}$$ # Endotoxin limit: The endotoxin limit for injections, defined on the basis of dose, equals K/M, where K is a minimum pyrogenic dose of endotoxin per kg body mass (EU/kg), and M is equal to the maximum dose of product per kg of body mass in a single hour period. Concentration of sample solution: - mg/mL in the case of endotoxin limit specified by mass (EU/mg) - mEq/mL in the case of endotoxin limit specified by equivalent (EU/mEq) - Units/mL in the case of endotoxin limit specified by biological unit (EU/Unit) - mL/mL in the case of endotoxin limit specified by