

described below. If more than 20 particles 10 µm or larger in size or if more than 5 particles 25 µm or larger in size are present within the filtration area, the precautions taken for the test are not sufficient. The preparatory steps must be repeated until the environment, glassware, membrane filter and water are suitable for the test.

Method

Mix the contents of the samples by slowly inverting the container 20 times successively. If necessary, cautiously remove the sealing closure. Clean the outer surfaces of the container opening using a jet of *particle-free water R* and remove the closure, avoiding any contamination of the contents.

For large-volume parenteral preparations, single units are tested. For small-volume parenteral preparations less than 25 mL in volume, the contents of 10 or more units are combined in a cleaned container; where justified and authorised, the test solution may be prepared by mixing the contents of a suitable number of vials and diluting to 25 mL with *particle-free water R* or with an appropriate solvent without contamination of particles when *particle-free water R* is not suitable. Small-volume parenteral preparations having a volume of 25 mL or more may be tested individually.

Powders for parenteral preparations are constituted with *particle-free water R* or with an appropriate solvent without contamination of particles when *particle-free water R* is not suitable.

The number of test specimens must be adequate to provide a statistically sound assessment. For large-volume parenteral preparations or for small-volume parenteral preparations having a volume of 25 mL or more, fewer than 10 units may be tested, based on an appropriate sampling plan.

Wet the inside of the filter holder fitted with the membrane filter with several millilitres of *particle-free water R*. Transfer to the filtration funnel the total volume of a solution pool or of a single unit, and apply vacuum. If needed, add stepwise a portion of the solution until the entire volume is filtered. After the last addition of solution, begin rinsing the inner walls of the filter holder by using a jet of *particle-free water R*. Maintain the vacuum until the surface of the membrane filter is free from liquid. Place the filter in a Petri dish and allow the filter to air-dry with the cover slightly ajar. After the filter has been dried, place the Petri dish on the stage of the microscope, scan the entire membrane filter under the reflected light from the illuminating device, and count the number of particles that are equal to or greater than 10 µm and the number of particles that are equal to or greater than 25 µm. Alternatively, partial filter count and determination of the total filter count by calculation is allowed. Calculate the mean number of particles for the preparation to be examined.

The particle sizing process with the use of the circular diameter graticule is carried out by transforming mentally the image of each particle into a circle and then comparing it to the 10 µm and 25 µm graticule reference circles. Thereby the particles are not moved from their initial locations within the graticule field of view and are not superimposed on the reference circles for comparison. The inner diameter of the transparent graticule reference circles is used to size white and transparent particles, while dark particles are sized by using the outer diameter of the black opaque graticule reference circles.

In performing the microscopic particle count test do not attempt to size or enumerate amorphous, semi-liquid, or otherwise morphologically indistinct materials that have the appearance of a stain or discolouration on the membrane filter. These materials show little or no surface relief and present a gelatinous or film-like appearance. In such cases the interpretation of enumeration may be aided by testing a sample of the solution by the light obscuration particle count test.

Evaluation

For preparations supplied in containers with a nominal volume of more than 100 mL, apply the criteria of test 2.A.

For preparations supplied in containers with a nominal volume of less than 100 mL, apply the criteria of test 2.B.

For preparations supplied in containers with a nominal volume of 100 mL, apply the criteria of test 2.B.

Test 2.A – Solutions for infusion or solutions for injection supplied in containers with a nominal content of more than 100 mL

The preparation complies with the test if the average number of particles present in the units tested does not exceed 12 per millilitre equal to or greater than 10 µm and does not exceed 2 per millilitre equal to or greater than 25 µm.

Test 2.B – Solutions for infusion or solutions for injection supplied in containers with a nominal content of less than 100 mL

The preparation complies with the test if the average number of particles present in the units tested does not exceed 3000 per container equal to or greater than 10 µm and does not exceed 300 per container equal to or greater than 25 µm.

01/2008:20920

2.9.20. PARTICULATE CONTAMINATION: VISIBLE PARTICLES

Particulate contamination of injections and infusions consists of extraneous, mobile undissolved particles, other than gas bubbles, unintentionally present in the solutions.

The test is intended to provide a simple procedure for the visual assessment of the quality of parenteral solutions as regards visible particles. Other validated methods may be used.

APPARATUS

The apparatus (see Figure 2.9.20.-1) consists of a viewing station comprising:

- a matt black panel of appropriate size held in a vertical position,
- a non-glare white panel of appropriate size held in a vertical position next to the black panel,
- an adjustable lampholder fitted with a suitable, shaded, white-light source and with a suitable light diffuser (a viewing illuminator containing two 13 W fluorescent tubes, each 525 mm in length, is suitable). The intensity of illumination at the viewing point is maintained between 2000 lux and 3750 lux, although higher values are preferable for coloured glass and plastic containers.

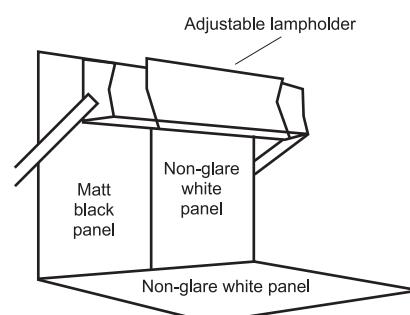


Figure 2.9.20.-1. – Apparatus for visible particles

METHOD

Remove any adherent labels from the container and wash and dry the outside. Gently swirl or invert the container, ensuring that air bubbles are not introduced, and observe for about 5 s in front of the white panel. Repeat the procedure in front of the black panel. Record the presence of any particles.

01/2008:20922

2.9.22. SOFTENING TIME DETERMINATION OF LIPOPHILIC SUPPOSITORIES

The test is intended to determine, under defined conditions, the time which elapses until a suppository maintained in water softens to the extent that it no longer offers resistance when a defined weight is applied.

APPARATUS A

The apparatus (see Figure 2.9.22.-1) consists of a glass tube 15.5 mm in internal diameter with a flat bottom and a length of about 140 mm. The tube is closed by a removable plastic cover having an opening 5.2 mm in diameter. The apparatus comprises a rod 5.0 mm in diameter which becomes wider towards the lower end, reaching a diameter of 12 mm. A metal needle 2 mm in length and 1 mm in diameter is fixed on the flat underside.

The rod consists of 2 parts, a lower part made of plastic material and an upper part made of plastic material or metal with a weight disk. The upper and lower parts are either fitted together (manual version) or separate (automated version). The weight of the entire rod is 30 ± 0.4 g. The upper part of the rod carries a sliding mark ring. When the rod is introduced into the glass tube so that it touches the bottom, the mark ring is adjusted to coincide with the upper level of the plastic cover.

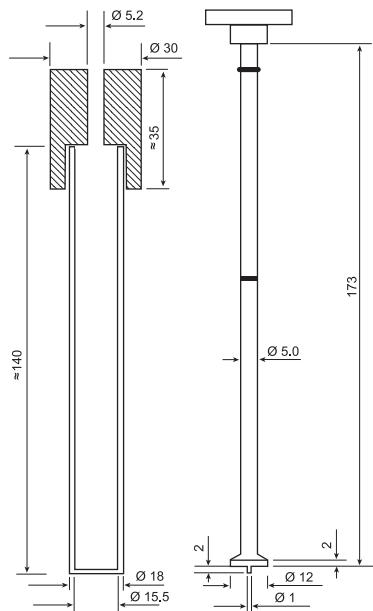


Figure 2.9.22.-1. – Apparatus A for measuring the softening time of lipophilic suppositories
Dimensions in millimetres

Method. Place the glass tube containing 10 mL of water in a water-bath and equilibrate at 36.5 ± 0.5 °C. Fix the glass tube vertically and immerse to a depth of at least 7 cm below the surface but without touching the bottom of the water-bath. Introduce a suppository, tip first, into the tube followed by the rod with the free gliding plastic cover into the glass tube until the metal needle touches the flat end of the suppository. Put the cover on the tube (beginning of time measurement). Note the time which elapses until the rod sinks down to the bottom of the glass tube and the mark ring reaches the upper level of the plastic cover.

APPARATUS B

The apparatus (see Figure 2.9.22.-2) consists of a water-bath (B) into which an inner tube (A) is inserted and fixed with a stopper. The inner tube is closed by a stopper at the bottom. The apparatus is fitted with a thermometer. 2 insets are available:

- a glass rod (C1) in the form of a tube sealed at both ends, carrying a rim at its lower end weighed with lead shot, which has a weight of 30 ± 0.4 g,
- a penetration inset (C2) consisting of a rod (7.5 ± 0.1 g) in a tube which has an enlargement for the suppository, both made of stainless steel.

Method. Pour 5 mL of water at 36.5 ± 0.5 °C into the inner tube (A), introduce a suppository with the tip downwards and onto that, place the inset (C1 or C2). Note the time which elapses between this moment and the moment when the lower, rimmed end of the glass rod (C1) or the steel rod (C2) reaches the narrowed part of the inner glass tube. Melting or dissolution is then considered as complete.

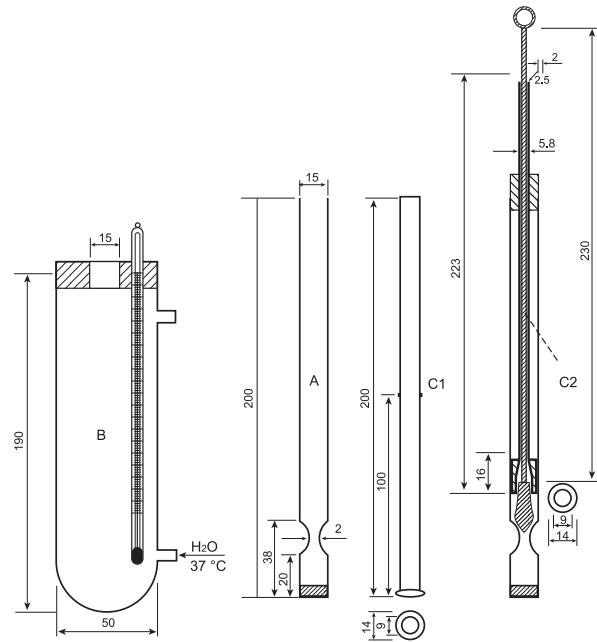


Figure 2.9.22.-2. – Apparatus B for measuring the softening time of lipophilic suppositories
Dimensions in millimetres

07/2008:20923

2.9.23. GAS PYCNOMETRIC DENSITY OF SOLIDS

Gas pycnometric density is determined by measuring the volume occupied by a known mass of powder, which is equivalent to the volume of gas displaced by the powder using a gas displacement pycnometer. In gas pycnometric density measurements, the volume determined excludes the volume occupied by open pores; however, it includes the volume occupied by sealed pores or pores inaccessible to the gas.

Usually, helium is used as a test gas due to its high diffusivity into small open pores. If gases other than helium are used, different values would be obtained, since the penetration of the gas is dependent on the size of the pore as well as the cross-sectional area of the gas molecules.

The measured density is a volume-weighted average of the densities of individual powder particles. It is called the particle density, distinct from the true density of a solid or the bulk density of a powder. The density of solids is expressed in grams per cubic centimetre (g/cm^3), although the International Unit is the kilogram per cubic meter ($1 \text{ g}/\text{cm}^3 = 1000 \text{ kg}/\text{m}^3$).

APPARATUS

The apparatus (see Figure 2.9.23.-1) consists of the following:

- a sealed test cell, with empty cell volume V_c , connected through a valve to an expansion cell, with volume V_r ;