

**Preparation:** discs.

**Comparison:** moxonidine CRS.

## TESTS

**Related substances.** Liquid chromatography (2.2.29).

**Test solution.** Dissolve 0.100 g of the substance to be examined in a mixture of equal volumes of *methanol R* and *water R* and dilute to 100.0 mL with the same mixture of solvents.

**Reference solution (a).** Dissolve 10.0 mg of *moxonidine CRS* in a mixture of equal volumes of *methanol R* and *water R* and dilute to 10.0 mL with the same mixture of solvents.

**Reference solution (b).** Dilute 1.0 mL of reference solution (a) to 100.0 mL with a mixture of equal volumes of *methanol R* and *water R*. Dilute 2.0 mL of this solution to 20.0 mL with a mixture of equal volumes of *methanol R* and *water R*.

**Reference solution (c).** Dissolve 5.0 mg of *moxonidine impurity A CRS* in a mixture of equal volumes of *methanol R* and *water R* and dilute to 100.0 mL with the same mixture of solvents.

**Reference solution (d).** Dilute 6.0 mL of reference solution (c) to 100.0 mL with a mixture of equal volumes of *methanol R* and *water R*.

**Reference solution (e).** Dilute 2.5 mL of reference solution (a) to 50.0 mL with reference solution (c).

**Column:**

- **size:**  $l = 0.25$  m,  $\varnothing = 4$  mm;
- **stationary phase:** *base-deactivated octylsilyl silica gel for chromatography R* (5  $\mu\text{m}$ );
- **temperature:** 40 °C.

**Mobile phase:** mix 136 volumes of *acetonitrile R* with 1000 volumes of a 3.48 g/L solution of *sodium pentanesulfonate R* previously adjusted to pH 3.5 with *dilute sulfuric acid R*.

**Flow rate:** 1.2 mL/min.

**Detection:** spectrophotometer at 230 nm.

**Injection:** 20  $\mu\text{L}$ ; inject a blank, the test solution and reference solutions (b), (d) and (e).

**Run time:** twice the retention time of moxonidine.

**Relative retentions** with reference to moxonidine (retention time = about 11.6 min): impurity A = about 0.9; impurity B = about 1.7.

**System suitability:** reference solution (e):

- **resolution:** minimum of 2 between the peaks due to impurity A and moxonidine.

**Limits:**

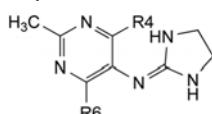
- **impurity A:** not more than the area of the corresponding peak in the chromatogram obtained with reference solution (d) (0.3 per cent);
- **impurity B:** not more than 3 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.3 per cent);
- **unspecified impurities:** for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (0.10 per cent);
- **total:** not more than 5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.5 per cent);
- **disregard limit:** 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent); disregard any peak observed with the blank run.

**Loss on drying** (2.2.32): maximum 0.5 per cent, determined on 1.000 g by drying in an oven at 105 °C for 3 h.

**Sulfated ash** (2.4.14): maximum 0.1 per cent, determined on 1.0 g.

## ASSAY

Liquid chromatography (2.2.29) as described in the test for related substances with the following modification.

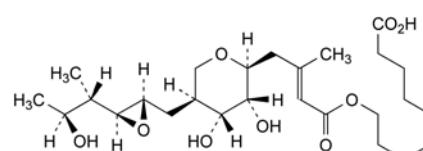

**Injection:** test solution and reference solution (a).

Calculate the percentage content of  $\text{C}_9\text{H}_{12}\text{ClN}_5\text{O}$  from the areas of the peaks and the declared content of *moxonidine CRS*.

## IMPURITIES

**Specified impurities:** A, B.

**Other detectable impurities** (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use* (2034). It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. *Control of impurities in substances for pharmaceutical use*): C, D.




- A.  $\text{R}4 = \text{R}6 = \text{Cl}$ : 4,6-dichloro-*N*-(imidazolidin-2-ylidene)-2-methylpyrimidin-5-amine (6-chloromoxonidine),
- B.  $\text{R}4 = \text{R}6 = \text{OCH}_3$ : *N*-(imidazolidin-2-ylidene)-4,6-dimethoxy-2-methylpyrimidin-5-amine (4-methoxymoxonidine),
- C.  $\text{R}4 = \text{OH}$ ,  $\text{R}6 = \text{OCH}_3$ : 5-[(imidazolidin-2-ylidene)amino]-6-methoxy-2-methylpyrimidin-4-ol (4-hydroxymoxonidine),
- D.  $\text{R}4 = \text{OH}$ ,  $\text{R}6 = \text{Cl}$ : 6-chloro-5-[(imidazolidin-2-ylidene)amino]-2-methylpyrimidin-4-ol (6-desmethylmoxonidine).

01/2008:1450  
corrected 6.0

## MUPIROCIN

Mupirocinum



$\text{C}_{26}\text{H}_{44}\text{O}_9$   
[12650-69-0]

$M_r$  500.6

## DEFINITION

9-[(2E)-4-[(2S,3R,4R,5S)-3,4-Dihydroxy-5-[(2S,3S)-3-[(1S,2S)-2-hydroxy-1-methylpropyl]oxiranyl]methyl]tetrahydro-2H-pyran-2-yl]-3-methylbut-2-enyl]oxy]nonanoic acid.

Substance produced by the growth of certain strains of *Pseudomonas fluorescens* or obtained by any other means.

**Content:** 93.0 per cent to 102.0 per cent (anhydrous substance).

## CHARACTERS

**Appearance:** white or almost white powder.

**Solubility:** slightly soluble in water, freely soluble in acetone, in anhydrous ethanol and in methylene chloride.

It shows polymorphism (5.9).

## IDENTIFICATION

Infrared absorption spectrophotometry (2.2.24).

**Comparison:** *Ph. Eur.* reference spectrum of mupirocin.

## TESTS

**pH** (2.2.3): 3.5 to 4.0 for a freshly prepared saturated solution (about 10 g/L) in *carbon dioxide-free water R*.

**Specific optical rotation** (2.2.7): –17 to –21 (anhydrous substance).

Dissolve 0.50 g in *methanol R* and dilute to 10.0 mL with the same solvent.

**Related substances.** Liquid chromatography (2.2.29).

**Solvent mixture.** Mix 50 volumes of *methanol R* and 50 volumes of a 13.6 g/L solution of *sodium acetate R* adjusted to pH 4.0 with *acetic acid R*.

**Test solution.** Dissolve 50.0 mg of the substance to be examined in the solvent mixture and dilute to 10.0 mL with the solvent mixture.

**Reference solution (a).** Dilute 1.0 mL of the test solution to 50.0 mL with the solvent mixture.

**Reference solution (b).** Adjust 10 mL of reference solution (a) to pH 2.0 with *hydrochloric acid R* and allow to stand for 20 h.

**Reference solution (c).** Dissolve 25 mg of *mupirocin lithium CRS* in the solvent mixture and dilute to 200.0 mL with the solvent mixture.

**Column:**

- **size:**  $l = 0.25$  m,  $\varnothing = 4.6$  mm;
- **stationary phase:** *octylsilyl silica gel for chromatography R* (5  $\mu\text{m}$ ).

**Mobile phase:** mix 20 volumes of *water R*, 30 volumes of *tetrahydrofuran R* and 50 volumes of a 10.5 g/L solution of *ammonium acetate R* adjusted to pH 5.7 with *acetic acid R*.

**Flow rate:** 1 mL/min.

**Detection:** spectrophotometer at 240 nm.

**Injection:** 20  $\mu\text{L}$ .

**Run time:** 3.5 times the retention time of mupirocin.

**Relative retention** with reference to mupirocin: impurity C = about 0.75.

**System suitability:** reference solution (b):

- **resolution:** minimum 7.0 between the 2<sup>nd</sup> of the 2 peaks due to hydrolysis products and the peak due to mupirocin.

**Limits:**

- **impurity C:** not more than twice the area of the principal peak in the chromatogram obtained with reference solution (a) (4 per cent);
- **any other impurity:** for each impurity, not more than 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (1 per cent);
- **total:** not more than 3 times the area of the principal peak in the chromatogram obtained with reference solution (a) (6 per cent);
- **disregard limit:** 0.05 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.1 per cent).

**Water** (2.5.12): maximum 1.0 per cent, determined on 0.500 g.

## ASSAY

Liquid chromatography (2.2.29).

**Test solution.** Dissolve 25.0 mg of the substance to be examined in 5 mL of *methanol R* and dilute to 200.0 mL with a 7.5 g/L solution of *ammonium acetate R* adjusted to pH 5.7 with *acetic acid R*.

**Reference solution (a).** Dissolve 25.0 mg of *mupirocin lithium CRS* in 5 mL of *methanol R* and dilute to 200.0 mL with a 7.5 g/L solution of *ammonium acetate R* adjusted to pH 5.7 with *acetic acid R*.

**Reference solution (b).** Adjust 10 mL of the test solution to pH 2.0 with *hydrochloric acid R* and allow to stand for 20 h.

**Column:**

- **size:**  $l = 0.25$  m,  $\varnothing = 4.6$  mm;
- **stationary phase:** *octylsilyl silica gel for chromatography R* (5  $\mu\text{m}$ ).

**Mobile phase:** mix 19 volumes of *water R*, 32 volumes of *tetrahydrofuran R* and 49 volumes of a 10.5 g/L solution of *ammonium acetate R* adjusted to pH 5.7 with *acetic acid R*.

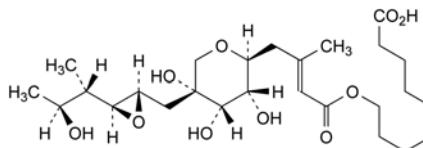
**Flow rate:** 1 mL/min.

**Detection:** spectrophotometer at 230 nm.

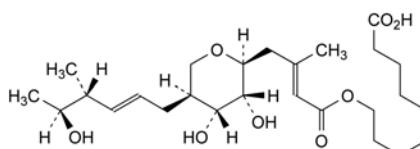
**Injection:** 20  $\mu\text{L}$ .

**System suitability:**

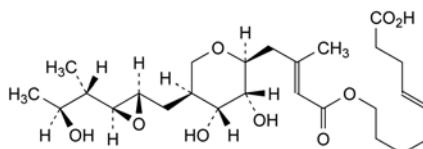
- **resolution:** minimum 7.0 between the 2<sup>nd</sup> of the 2 peaks due to hydrolysis products and the peak due to mupirocin in the chromatogram obtained with reference solution (b);
- **repeatability:** maximum relative standard deviation of 1.0 per cent after 6 injections of reference solution (a).


## STORAGE

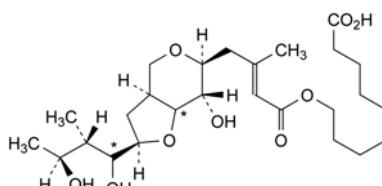
Protected from light.


## IMPURITIES

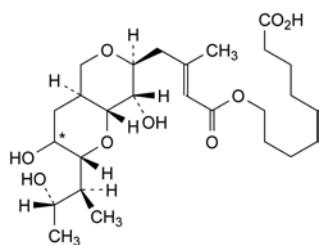
**Specified impurities:** C.


**Other detectable impurities** (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use* (2034). It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. *Control of impurities in substances for pharmaceutical use*): A, B, D, E, F.

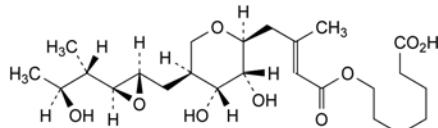



A. 9-[(2E)-4-[(2S,3R,4R,5R)-3,4,5-trihydroxy-5-[(2S,3S)-3-[(1S,2S)-2-hydroxy-1-methylpropyl]oxiranyl]methyl]-tetrahydro-2H-pyran-2-yl]-3-methylbut-2-enyl]oxy]nonanoic acid (pseudomonic acid B),




B. 9-[(2E)-4-[(2S,3R,4R,5S)-3,4-dihydroxy-5-[(2E,4R,5S)-5-hydroxy-4-methylhex-2-enyl]tetrahydro-2H-pyran-2-yl]-3-methylbut-2-enyl]oxy]nonanoic acid (pseudomonic acid C),



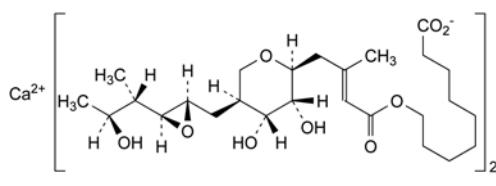

C. (4E)-9-[(2E)-4-[(2S,3R,4R,5S)-3,4-dihydroxy-5-[(2S,3S)-3-[(1S,2S)-2-hydroxy-1-methylpropyl]oxiranyl]methyl]-tetrahydro-2H-pyran-2-yl]-3-methylbut-2-enyl]oxy]-non-4-enoic acid (pseudomonic acid D),



D. 9-[(2E)-4-[(2R,3aS,6S,7S)-2-[(2S,3S)-1,3-dihydroxy-2-methylbutyl]-7-hydroxyhexahydro-4H-furo[3,2-c]pyran-6-yl]-3-methylbut-2-enyl]oxy]nonanoic acid,



E. 9-[(2E)-4-[(2R,3RS,4aS,7S,8S,8aR)-3,8-dihydroxy-2-[(1S,2S)-2-hydroxy-1-methylpropyl]hexahydro-2H,5H-pyrano[4,3-b]pyran-7-yl]-3-methylbut-2-enyl]oxy]nonanoic acid,




F. 7-[(2E)-4-[(2S,3R,4R,5S)-3,4-dihydroxy-5-[(2S,3S)-3-[(1S,2S)-2-hydroxy-1-methylpropyl]oxiranyl]methyl]tetrahydro-2H-pyran-2-yl]-3-methylbut-2-enyl]oxy]heptanoic acid.

07/2010:1451

## MUPIROCIN CALCIUM

### Mupirocine calcicum



$C_{52}H_{86}CaO_{18} \cdot 2H_2O$   
[115074-43-6]

$M_r$  1075

#### DEFINITION

Calcium bis[9-[(2E)-4-[(2S,3R,4R,5S)-3,4-dihydroxy-5-[(2S,3S)-3-[(1S,2S)-2-hydroxy-1-methylpropyl]oxiranyl]methyl]tetrahydro-2H-pyran-2-yl]-3-methylbut-2-enyl]oxy]nonanoate] dihydrate.

Substance produced by the growth of certain strains of *Pseudomonas fluorescens* or obtained by any other means.

Content: 93.0 per cent to 102.0 per cent (anhydrous substance).

#### CHARACTERS

**Appearance:** white or almost white powder.

**Solubility:** very slightly soluble in water, sparingly soluble in anhydrous ethanol and in methylene chloride.

#### IDENTIFICATION

A. Infrared absorption spectrophotometry (2.2.24).

Comparison: *Ph. Eur.* reference spectrum of mupirocine calcium.

B. It gives reaction (a) of calcium (2.3.1).

#### TESTS

**Specific optical rotation** (2.2.7): -16 to -20 (anhydrous substance).

Dissolve 0.50 g in methanol *R* and dilute to 10.0 mL with the same solvent.

**Related substances.** Liquid chromatography (2.2.29).

**Solvent mixture.** Mix 50 volumes of methanol *R* and 50 volumes of a 13.6 g/L solution of sodium acetate *R* adjusted to pH 4.0 with acetic acid *R*.

**Test solution.** Dissolve 50.0 mg of the substance to be examined in the solvent mixture and dilute to 10.0 mL with the solvent mixture.

**Reference solution (a).** Dilute 1.0 mL of the test solution to 50.0 mL with the solvent mixture.

**Reference solution (b).** Adjust 10 mL of reference solution (a) to pH 2.0 with hydrochloric acid *R* and allow to stand for 20 h.

**Reference solution (c).** Dissolve 25 mg of mupirocine lithium CRS in the solvent mixture and dilute to 200.0 mL with the solvent mixture.

**Column:**

- **size:**  $l = 0.25$  m,  $\varnothing = 4.6$  mm;
- **stationary phase:** octylsilyl silica gel for chromatography *R* (5  $\mu$ m).

**Mobile phase:** mix 20 volumes of water *R*, 30 volumes of tetrahydrofuran *R* and 50 volumes of a 10.5 g/L solution of ammonium acetate *R* adjusted to pH 5.7 with acetic acid *R*.

**Flow rate:** 1 mL/min.

**Detection:** spectrophotometer at 240 nm.

**Injection:** 20  $\mu$ L.

**Run time:** 3.5 times the retention time of mupirocine.

**Relative retention** with reference to mupirocine: impurity C = about 0.75.

**System suitability:** reference solution (b):

- **resolution:** minimum 7.0 between the 2<sup>nd</sup> of the 2 peaks due to hydrolysis products and the peak due to mupirocine.

**Limits:**

- **impurity C:** not more than 1.25 times the area of the principal peak in the chromatogram obtained with reference solution (a) (2.5 per cent);
- **any other impurity:** for each impurity, not more than 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (1 per cent);
- **total:** not more than 2.25 times the area of the principal peak in the chromatogram obtained with reference solution (a) (4.5 per cent);
- **disregard limit:** 0.05 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.1 per cent).

**Chlorides** (2.4.4): maximum 0.5 per cent.

Dissolve 10.0 mg in a mixture of 1 mL of dilute nitric acid *R* and 15 mL of methanol *R*.

**Water** (2.5.12): 3.0 per cent to 4.5 per cent, determined on 0.500 g.

#### ASSAY

Liquid chromatography (2.2.29).

**Test solution.** Dissolve 25.0 mg of the substance to be examined in 5 mL of methanol *R* and dilute to 200.0 mL with a 7.5 g/L solution of ammonium acetate *R* adjusted to pH 5.7 with acetic acid *R*.

**Reference solution (a).** Dissolve 25.0 mg of mupirocine lithium CRS in 5 mL of methanol *R* and dilute to 200.0 mL with a 7.5 g/L solution of ammonium acetate *R* adjusted to pH 5.7 with acetic acid *R*.

**Reference solution (b).** Adjust 10 mL of the test solution to pH 2.0 with hydrochloric acid *R* and allow to stand for 20 h.

**Column:**

- **size:**  $l = 0.25$  m,  $\varnothing = 4.6$  mm;
- **stationary phase:** octylsilyl silica gel for chromatography *R* (5  $\mu$ m).

**Mobile phase:** mix 19 volumes of water *R*, 32 volumes of tetrahydrofuran *R* and 49 volumes of a 10.5 g/L solution of ammonium acetate *R* adjusted to pH 5.7 with acetic acid *R*.

**Flow rate:** 1 mL/min.

**Detection:** spectrophotometer at 230 nm.

**Injection:** 20  $\mu$ L.