

Wavelength: 285.2 nm.

Water (2.5.12): 7.0 per cent to 10.0 per cent, determined on 0.200 g.

ASSAY

Liquid chromatography (2.2.29).

Buffer pH 11.0. Mix 11 mL of a 95.0 g/L solution of *trisodium phosphate dodecahydrate* R and 22 mL of a 179.1 g/L solution of *disodium hydrogen phosphate* R. Dilute to 100.0 mL with *water* R.

Test solution. Dissolve 10.0 mg of the substance to be examined in about 10 mL of *methanol* R. Add 10 mL of buffer pH 11.0 and dilute to 200.0 mL with *water* R.

Reference solution. Dissolve 10.0 mg of *omeprazole CRS* in about 10 mL of *methanol* R. Add 10 mL of buffer pH 11.0 and dilute to 200.0 mL with *water* R.

Column:

- **size:** $l = 0.125$ m, $\varnothing = 4$ mm;
- **stationary phase:** *octylsilyl silica gel for chromatography* R (5 μ m).

Mobile phase: mix 35 volumes of *acetonitrile* R and 65 volumes of a 1.4 g/L solution of *disodium hydrogen phosphate* R previously adjusted to pH 7.6 with *phosphoric acid* R.

Flow rate: 1 mL/min.

Detection: spectrophotometer at 280 nm.

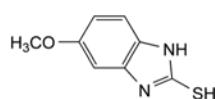
Injection: 20 μ L.

Run time: 1.5 times the retention time of omeprazole.

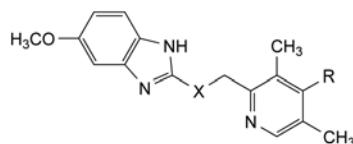
Retention time: omeprazole = about 4 min.

Calculate the percentage content of $C_{34}H_{36}MgN_6O_6S_2$ from the declared content of *omeprazole CRS*.

1 g of omeprazole is equivalent to 1.032 g of omeprazole magnesium.

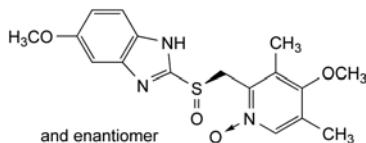

STORAGE

In an airtight container, protected from light.


IMPURITIES

Specified impurities: D, E.

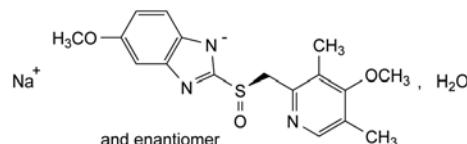
Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use* (2034). It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. *Control of impurities in substances for pharmaceutical use*): A, B, C.


A. 5-methoxy-1*H*-benzimidazole-2-thiol,

B. R = H, X = SO: 2-[(RS)-[(3,5-dimethylpyridin-2-yl)methyl]sulfinyl]-5-methoxy-1*H*-benzimidazole,

C. R = OCH₃, X = S: 5-methoxy-2-[[[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfanyl]-1*H*-benzimidazole,

D. R = OCH₃, X = SO₂: 5-methoxy-2-[[[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfonyl]-1*H*-benzimidazole,



E. 4-methoxy-2-[(RS)-[(3,5-dimethylpyridin-2-yl)methyl]sulfinyl]-3,5-dimethylpyridine 1-oxide.

01/2011:1032

OMEPRAZOLE SODIUM

Omeprazolum natricum

$C_{17}H_{18}N_3NaO_3S \cdot H_2O$
[95510-70-6]

M_r 385.4

DEFINITION

Sodium 5-methoxy-2-[(RS)-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl]-1*H*-benzimidazole monohydrate.

Content: 98.0 per cent to 101.0 per cent (anhydrous substance).

CHARACTERS

Appearance: white or almost white, hygroscopic powder.

Solubility: freely soluble in water and in ethanol (96 per cent), soluble in propylene glycol, very slightly soluble in methylene chloride.

IDENTIFICATION

A. Optical rotation (2.2.7): -0.10° to $+0.10^\circ$, determined on solution S.

B. Infrared absorption spectrophotometry (2.2.24).

Preparation: dissolve 0.50 g of the substance to be examined in 1.50 mL of *water* R, add 3.0 mL of *methanol* R and stir; while stirring, adjust to pH 8.9 by adding, dropwise, *dilute acetic acid* R (about 0.4 mL); continue stirring until crystallisation and isolate the crystalline precipitate by filtration; wash with 5 mL of *water* R, then 2 mL of *methanol* R, and dry *in vacuo* at 40 °C for 30 min.

Comparison: *omeprazole CRS*.

If the spectra obtained in the solid state show differences, dissolve the crystalline precipitate and the reference substance separately in *methanol* R, evaporate to dryness and record new spectra using the residues.

C. Ignite 1 g and cool. Add 1 mL of *water* R to the residue and neutralise with *hydrochloric acid* R. Filter and dilute the filtrate to 4 mL with *water* R. 0.1 mL of the solution gives reaction (b) of sodium (2.3.I).

TESTS

Solution S. Dissolve 0.50 g in *carbon dioxide-free water* R and dilute to 25 mL with the same solvent.

Appearance of solution. Solution S is clear (2.2.1) and not more intensely coloured than reference solution B₆ (2.2.2, *Method II*).

pH (2.2.3): 10.3 to 11.3 for solution S.

Related substances. Liquid chromatography (2.2.29). Prepare solutions immediately before use.

Test solution. Dissolve 3 mg of the substance to be examined in the mobile phase and dilute to 25.0 mL with the mobile phase.

Reference solution (a). Dissolve 1 mg of *omeprazole CRS* and 1 mg of *omeprazole impurity D CRS* in the mobile phase and dilute to 10.0 mL with the mobile phase.

Reference solution (b). Dilute 1.0 mL of the test solution to 100.0 mL with the mobile phase. Dilute 1.0 mL of this solution to 10.0 mL with the mobile phase.

Reference solution (c). Dissolve 3 mg of *omeprazole for peak identification CRS* (containing impurity E) in the mobile phase and dilute to 25.0 mL with the mobile phase.

Column:

- *size: l = 0.125 m, Ø = 4.6 mm;*
- *stationary phase: octylsilyl silica gel for chromatography R (5 µm).*

Mobile phase: mix 27 volumes of *acetonitrile R* and 73 volumes of a 1.4 g/L solution of *disodium hydrogen phosphate R*, previously adjusted to pH 7.6 with *phosphoric acid R*.

Flow rate: 1 mL/min.

Detection: spectrophotometer at 280 nm.

Injection: 40 µL.

Run time: 5 times the retention time of *omeprazole*.

Identification of impurities: use the chromatogram supplied with *omeprazole for peak identification CRS* and the chromatogram obtained with reference solution (c) to identify the peak due to impurity E; use the chromatogram obtained with reference solution (a) to identify the peak due to impurity D.

Relative retention with reference to *omeprazole* (retention time = about 9 min): impurity E = about 0.6; impurity D = about 0.8.

System suitability: reference solution (a):

- *resolution:* minimum 3.0 between the peaks due to impurity D and *omeprazole*; if necessary adjust the pH of the aqueous part of the mobile phase or the concentration of *acetonitrile R*; an increase in the pH will improve the resolution.

Limits:

- *impurities D, E:* for each impurity, not more than 1.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.15 per cent);
- *unspecified impurities:* for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (0.10 per cent);
- *total:* not more than 5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.5 per cent);
- *disregard limit:* 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent).

Heavy metals (2.4.8): maximum 20 ppm.

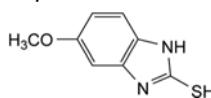
1.0 g complies with test C. Prepare the reference solution using 2 mL of *lead standard solution (10 ppm Pb) R*.

Water (2.5.12): 4.5 per cent to 10.0 per cent, determined on 0.300 g.

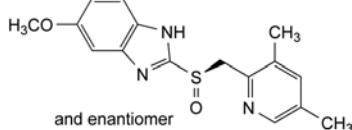
ASSAY

Dissolve 0.300 g in 50 mL of *water R*. Titrate with 0.1 M *hydrochloric acid*, determining the end-point potentiometrically (2.2.20).

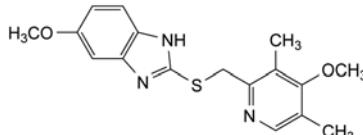
1 mL of 0.1 M *hydrochloric acid* corresponds to 36.74 mg of $C_{17}H_{18}N_3NaO_3S$.

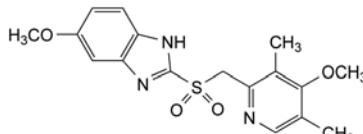

STORAGE

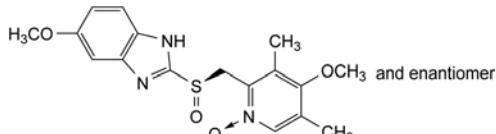
In an airtight container, protected from light.


IMPURITIES

Specified impurities: D, E.

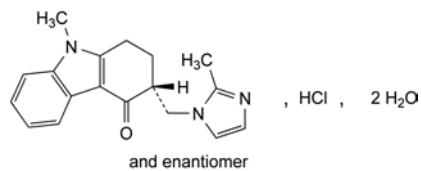

Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use* (2034). It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. *Control of impurities in substances for pharmaceutical use*): A, B, C.


A. 5-methoxy-1*H*-benzimidazole-2-thiol,


B. 2-[(*RS*)-[(3,5-dimethylpyridin-2-yl)methyl]sulfinyl]-5-methoxy-1*H*-benzimidazole,

C. 5-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfanyl-1*H*-benzimidazole (omeprazole-sulfone),

D. 5-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfonyl-1*H*-benzimidazole (omeprazole-sulfone),



E. 4-methoxy-2-[(*RS*)-(5-methoxy-1*H*-benzimidazol-2-yl)sulfinyl]methyl-3,5-dimethylpyridine 1-oxide.

01/2008:2016

ONDANSETRON HYDROCHLORIDE DIHYDRATE

Ondansetron hydrochloridum dihydricum

$C_{18}H_{20}ClN_3O_2 \cdot 2H_2O$

M_r 365.9

DEFINITION

(3*S*)-9-Methyl-3-[(2-methyl-1*H*-imidazol-1-yl)methyl]-1,2,3,9-tetrahydro-4*H*-carbazol-4-one hydrochloride dihydrate.

Content: 97.5 per cent to 102.0 per cent (anhydrous substance).

CHARACTERS

Appearance: white or almost white powder.

Solubility: sparingly soluble in water and in alcohol, soluble in methanol, slightly soluble in methylene chloride.

IDENTIFICATION

A. Infrared absorption spectrophotometry (2.2.24).

Comparison: *ondansetron hydrochloride dihydrate CRS*.

B. It gives reaction (a) of chlorides (2.3.1).