

Run time: 3 times the retention time of acesulfame.

04/2009:0454

Relative retention with reference to acesulfame (retention time = about 5.3 min): impurity B = about 1.6.

System suitability:

- *peak-to-valley ratio*: minimum 1.2, where H_p = height above the baseline of the peak due to impurity B and H_v = height above the baseline of the lowest point of the curve separating this peak from the peak due to acesulfame in the chromatogram obtained with reference solution (b).

Limits:

- *impurity B*: not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (20 ppm),
- *unspecified impurities*: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (c) (0.1 per cent),
- *total*: not more than the area of the principal peak in the chromatogram obtained with reference solution (c) (0.1 per cent),
- *disregard limit*: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (c) except for the peak due to impurity B (0.05 per cent).

Fluorides: maximum 3 ppm.

Potentiometry (2.2.36, *Method I*).

Test solution. Dissolve 3.000 g of the substance to be examined in *distilled water* R, add 15.0 mL of *total-ionic-strength-adjustment buffer* R1 and dilute to 50.0 mL with *distilled water* R.

Reference solutions. To 0.5 mL, 1.0 mL, 1.5 mL and 3.0 mL of *fluoride standard solution* (10 ppm F) R add 15.0 mL of *total-ionic-strength-adjustment buffer* R1 and dilute to 50.0 mL with *distilled water* R.

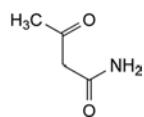
Indicator electrode: fluoride-selective.

Reference electrode: silver-silver chloride.

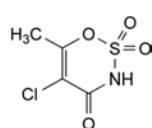
Heavy metals (2.4.8): maximum 5 ppm.

12 mL of solution S complies with test A. Prepare the reference solution using *lead standard solution* (1 ppm Pb) R.

Loss on drying (2.2.32): maximum 1.0 per cent, determined on 1.000 g by drying in an oven at 105 °C for 3 h.

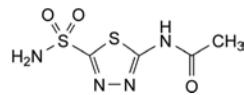

ASSAY

Dissolve 0.150 g in 50 mL of *anhydrous acetic acid* R. Titrate with 0.1 M *perchloric acid*, determining the end-point potentiometrically (2.2.20).


1 mL of 0.1 M *perchloric acid* is equivalent to 20.12 mg of C₄H₄KNO₄S.

IMPURITIES

Specified impurities: A, B.


A. 3-oxobutanamide (acetylacetamide),

B. 5-chloro-6-methyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide.

ACETAZOLAMIDE

Acetazolamidum

C₄H₆N₄O₃S₂
[59-66-5]

M_r 222.2

DEFINITION

N-(5-Sulfamoyl-1,3,4-thiadiazol-2-yl)acetamide.

Content: 98.5 per cent to 101.0 per cent (dried substance).

CHARACTERS

Appearance: white or almost white, crystalline powder.

Solubility: very slightly soluble in water, slightly soluble in ethanol (96 per cent). It dissolves in dilute solutions of alkali hydroxides.

It shows polymorphism (5.9).

IDENTIFICATION

First identification: A, B.

Second identification: A, C, D.

A. Ultraviolet and visible absorption spectrophotometry (2.2.25).

Solution A. Dissolve 30.0 mg in 0.01 M *sodium hydroxide* and dilute to 100.0 mL with the same solvent. Dilute 10.0 mL of the solution to 100.0 mL with 0.01 M *sodium hydroxide*.

Solution B. Dilute 25.0 mL of solution A to 100.0 mL with 0.01 M *sodium hydroxide*.

Spectral range: 230-260 nm for solution A; 260-350 nm for solution B.

Absorption maximum: at 240 nm for solution A; at 292 nm for solution B.

Specific absorbance at the absorption maximum: 162 to 176 for solution A; 570 to 620 for solution B.

B. Infrared absorption spectrophotometry (2.2.24).

Comparison: acetazolamide CRS.

If the spectra obtained in the solid state show differences, dissolve the substance to be examined and the reference substance separately in *ethanol* (96 per cent) R, evaporate to dryness and record new spectra using the residues.

C. Introduce about 20 mg into a test-tube and add 4 mL of *dilute hydrochloric acid* R and 0.2 g of *zinc powder* R. Immediately place a piece of *lead acetate paper* R over the mouth of the tube. The paper shows a brownish-black colour.

D. Dissolve about 25 mg in a mixture of 0.1 mL of *dilute sodium hydroxide solution* R and 5 mL of *water* R. Add 0.1 mL of *copper sulfate solution* R. A greenish-blue precipitate is formed.

TESTS

Appearance of solution. The solution is not more opalescent than reference suspension II (2.2.1) and not more intensely coloured than reference solution Y₅ or BY₅ (2.2.2, *Method II*). Dissolve 1.0 g in 10 mL of 1 M *sodium hydroxide*.

Related substances. Liquid chromatography (2.2.29).

Test solution. Dissolve 40 mg of the substance to be examined in the mobile phase and dilute to 100.0 mL with the mobile phase.

Reference solution (a). Dilute 1.0 mL of the test solution to 100.0 mL with the mobile phase. Dilute 1.0 mL of this solution to 10.0 mL with the mobile phase.

Reference solution (b). Dissolve the contents of a vial of *acetazolamide for system suitability CRS* (containing impurities A, B, C, D, E and F) in 1.0 mL of the mobile phase.

Column:

- *size: l = 0.15 m, Ø = 4.6 mm;*
- *stationary phase: end-capped propoxybenzene silica gel for chromatography R (4 µm).*

Mobile phase: acetonitrile for chromatography R, 6.8 g/L solution of potassium dihydrogen phosphate R (10:90 V/V).

Flow rate: 1.0 mL/min.

Detection: spectrophotometer at 265 nm.

Injection: 25 µL.

Run time: 3.5 times the retention time of acetazolamide.

Identification of impurities: use the chromatogram supplied with *acetazolamide for system suitability CRS* and the chromatogram obtained with reference solution (b) to identify the peaks due to impurities A, B, C, D, E and F.

Relative retention with reference to acetazolamide (retention time = about 8 min): impurity E = about 0.3; impurity D = about 0.4; impurity B = about 0.6; impurity C = about 1.4; impurity A = about 2.1; impurity F = about 2.6.

System suitability: reference solution (b):

- *resolution:* minimum 2.0 between the peaks due to impurities E and D.

Limits:

- *correction factors:* for the calculation of content, multiply the peak areas of the following impurities by the corresponding correction factor: impurity B = 2.3; impurity C = 2.6; impurity D = 1.6;
- *impurities A, B, C, D, E, F:* for each impurity, not more than 1.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.15 per cent);
- *unspecified impurities:* for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.10 per cent);
- *total:* not more than 6 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.6 per cent);
- *disregard limit:* 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.05 per cent).

Sulfates (2.4.13): maximum 500 ppm.

To 0.4 g add 20 mL of *distilled water R* and dissolve by heating to boiling. Allow to cool with frequent shaking and filter.

Heavy metals (2.4.8): maximum 20 ppm.

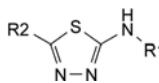
1.0 g complies with test C. Prepare the reference solution using 2 mL of *lead standard solution (10 ppm Pb) R*.

Loss on drying (2.2.32): maximum 0.5 per cent, determined on 1.000 g by drying in an oven at 105 °C.

Sulfated ash (2.4.14): maximum 0.1 per cent, determined on 1.0 g.

ASSAY

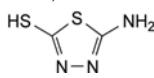
Dissolve 0.200 g in 25 mL of *dimethylformamide R*. Titrate with 0.1 M *ethanolic sodium hydroxide*, determining the end-point potentiometrically (2.2.20).


1 mL of 0.1 M *ethanolic sodium hydroxide* is equivalent to 22.22 mg of C₄H₆N₄O₃S₂.

IMPURITIES

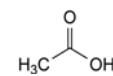

Specified impurities: A, B, C, D, E, F.

Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use*


(2034). It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. *Control of impurities in substances for pharmaceutical use*): G.

- A. R1 = CO-CH₃, R2 = Cl: *N*-(5-chloro-1,3,4-thiadiazol-2-yl)acetamide,
- B. R1 = CO-CH₃, R2 = H: *N*-(1,3,4-thiadiazol-2-yl)acetamide,
- C. R1 = CO-CH₃, R2 = SH: *N*-(5-sulfanyl-1,3,4-thiadiazol-2-yl)acetamide,
- D. R1 = H, R2 = SO₂-NH₂: 5-amino-1,3,4-thiadiazole-2-sulfonamide,
- E. R1 = CO-CH₃, R2 = SO₂-OH: 5-acetamido-1,3,4-thiadiazole-2-sulfonic acid,

- F. *N*-[5-[(5-acetamido-1,3,4-thiadiazol-2-yl)sulfonyl]sulfamoyl-1,3,4-thiadiazol-2-yl]acetamide,



- G. 5-amino-1,3,4-thiadiazole-2-thiol.

01/2008:0590

ACETIC ACID, GLACIAL

Acidum aceticum glaciale

C₂H₄O₂
[64-19-7]

M_r 60.1

DEFINITION

Content: 99.0 per cent *m/m* to 100.5 per cent *m/m*.

CHARACTERS

Appearance: crystalline mass or clear, colourless, volatile liquid.

Solubility: miscible with water, with ethanol (96 per cent) and with methylene chloride.

IDENTIFICATION

- A. A 100 g/L solution is strongly acid (2.2.4).
- B. To 0.03 mL add 3 mL of *water R* and neutralise with *dilute sodium hydroxide solution R*. The solution gives reaction (b) of acetates (2.3.1).

TESTS

Solution S. Dilute 20 mL to 100 mL with *distilled water R*.

Appearance. The substance to be examined is clear (2.2.1) and colourless (2.2.2, *Method II*).

Freezing point (2.2.18): minimum 14.8 °C.

Reducing substances. To 5.0 mL add 10.0 mL of *water R* and mix. To 5.0 mL of this solution add 6 mL of *sulfuric acid R*, cool and add 2.0 mL of 0.0167 M *potassium dichromate*. Allow to stand for 1 min and add 25 mL of *water R* and 1 mL of a freshly prepared 100 g/L solution of *potassium iodide R*. Titrate with 0.1 M *sodium thiosulfate*, using 1.0 mL of *starch solution R* as indicator. Not less than 1.0 mL of 0.1 M *sodium thiosulfate* solution is required.

Chlorides (2.4.4): maximum 25 mg/L.

Dilute 10 mL of solution S to 15 mL with *water R*.

Sulfates (2.4.13): maximum 50 mg/L, determined on solution S.