

07/2008:0043
corrected 6.5**MAGNESIUM CARBONATE, HEAVY****Magnesii subcarbonas ponderosus****DEFINITION**

Hydrated basic magnesium carbonate.

Content: 40.0 per cent to 45.0 per cent, calculated as MgO (M_r 40.30).**CHARACTERS***Appearance:* white or almost white powder.*Solubility:* practically insoluble in water. It dissolves in dilute acids with effervescence.**IDENTIFICATION**

A. Bulk density (2.9.34): minimum 0.25 g/mL.

B. It gives the reaction of carbonates (2.3.1).

C. Dissolve about 15 mg in 2 mL of *dilute nitric acid R* and neutralise with *dilute sodium hydroxide solution R*. The solution gives the reaction of magnesium (2.3.1).**TESTS****Solution S.** Dissolve 5.0 g in 100 mL of *dilute acetic acid R*. When the effervescence has ceased, boil for 2 min, allow to cool and dilute to 100 mL with *dilute acetic acid R*. Filter, if necessary, through a previously ignited and tared porcelain or silica filter crucible of suitable porosity to give a clear filtrate.**Appearance of solution.** Solution S is not more intensely coloured than reference solution B₄ (2.2.2, *Method II*).**Soluble substances:** maximum 1.0 per cent.Mix 2.00 g with 100 mL of *water R* and boil for 5 min. Filter whilst hot through a sintered-glass filter (40) (2.1.2), allow to cool and dilute to 100 mL with *water R*. Evaporate 50 mL of the filtrate to dryness and dry at 100–105 °C. The residue weighs not more than 10 mg.**Substances insoluble in acetic acid:** maximum 0.05 per cent. Any residue obtained during the preparation of solution S, washed, dried, and ignited at 600 ± 50 °C, weighs not more than 2.5 mg.**Chlorides (2.4.4):** maximum 700 ppm.Dilute 1.5 mL of solution S to 15 mL with *water R*.**Sulfates (2.4.13):** maximum 0.6 per cent.Dilute 0.5 mL of solution S to 15 mL with *distilled water R*.**Arsenic (2.4.2, *Method A*):** maximum 2 ppm, determined on 10 mL of solution S.**Calcium (2.4.3):** maximum 0.75 per cent.Dilute 2.6 mL of solution S to 150 mL with *distilled water R*. 15 mL of the solution complies with the test.**Iron (2.4.9):** maximum 400 ppm.Dissolve 0.1 g in 3 mL of *dilute hydrochloric acid R* and dilute to 10 mL with *water R*. Dilute 2.5 mL of the solution to 10 mL with *water R*.**Heavy metals (2.4.8):** maximum 20 ppm.To 20 mL of solution S add 15 mL of *hydrochloric acid R1* and shake with 25 mL of *methyl isobutyl ketone R* for 2 min. Allow to stand, separate the aqueous lower layer and evaporate to dryness. Dissolve the residue in 1 mL of *acetic acid R* and dilute to 20 mL with *water R*. 12 mL of the solution complies with test A. Prepare the reference solution using *lead standard solution (1 ppm Pb) R*.**ASSAY**Dissolve 0.150 g in a mixture of 2 mL of *dilute hydrochloric acid R* and 20 mL of *water R*. Carry out the complexometric titration of magnesium (2.5.11).1 mL of 0.1 M *sodium edetate* is equivalent to 4.030 mg of MgO.**FUNCTIONALITY-RELATED CHARACTERISTICS***This section provides information on characteristics that are recognised as being relevant control parameters for one or more functions of the substance when used as an excipient (see chapter 5.15). This section is a non-mandatory part of the monograph and it is not necessary to verify the characteristics to demonstrate compliance. Control of these characteristics can however contribute to the quality of a medicinal product by improving the consistency of the manufacturing process and the performance of the medicinal product during use.**Where control methods are cited, they are recognised as being suitable for the purpose, but other methods can also be used. Wherever results for a particular characteristic are reported, the control method must be indicated.**The following characteristics may be relevant for heavy magnesium carbonate used as filler in tablets.***Particle-size distribution (2.9.31 or 2.9.38).****Bulk and tapped density (2.9.34).**

04/2009:0042

MAGNESIUM CARBONATE, LIGHT**Magnesii subcarbonas levis**

[546-93-0]

DEFINITION

Hydrated basic magnesium carbonate.

Content: 40.0 per cent to 45.0 per cent, calculated as MgO (M_r 40.30).**CHARACTERS***Appearance:* white or almost white powder.*Solubility:* practically insoluble in water. It dissolves in dilute acids with effervescence.**IDENTIFICATION**

A. Bulk density (2.9.34): maximum 0.15 g/mL.

B. It gives the reaction of carbonates (2.3.1).

C. Dissolve about 15 mg in 2 mL of *dilute nitric acid R* and neutralise with *dilute sodium hydroxide solution R*. The solution gives the reaction of magnesium (2.3.1).**TESTS****Solution S.** Dissolve 5.0 g in 100 mL of *dilute acetic acid R*.When the effervescence has ceased, boil for 2 min, allow to cool and dilute to 100 mL with *dilute acetic acid R*. Filter, if necessary, through a previously ignited and tared porcelain or silica filter crucible of suitable porosity to give a clear filtrate.**Appearance of solution.** Solution S is not more intensely coloured than reference solution B₄ (2.2.2, *Method II*).**Soluble substances:** maximum 1.0 per cent.Mix 2.00 g with 100 mL of *water R* and boil for 5 min. Filter whilst hot through a sintered-glass filter (40) (2.1.2), allow to cool and dilute to 100 mL with *water R*. Evaporate 50 mL of the filtrate to dryness and dry at 100–105 °C. The residue weighs a maximum of 10 mg.**Substances insoluble in acetic acid:** maximum 0.05 per cent. Any residue obtained during the preparation of solution S, washed, dried and ignited at 600 ± 50 °C, weighs a maximum of 2.5 mg.**Chlorides (2.4.4):** maximum 700 ppm.Dilute 1.5 mL of solution S to 15 mL with *water R*.**Sulfates (2.4.13):** maximum 0.3 per cent.Dilute 1 mL of solution S to 15 mL with *distilled water R*.