Reference solution (b). Dissolve 2.0 mg of bisacodyl for system suitability CRS (containing impurities A, B, C, D and E) in 1.0 ml of acetonitrile R and dilute to 2.0 ml with the solvent mixture.

Reference solution (c). Dissolve 5.0 mg of bisacodyl for peak identification CRS (containing impurity F) in 2.5 ml of acetonitrile R and dilute to 5.0 ml with the solvent mixture.

Column:

- size: l = 0.25 m, $\emptyset = 4.6$ mm;
- stationary phase: end-capped octadecylsilyl silica gel for chromatography R (5 μm).

Mobile phase: mix 45 volumes of acetonitrile R and 55 volumes of a 1.58 g/l solution of ammonium formate R previously adjusted to pH 5.0 with anhydrous formic acid R.

Flow rate: 1.5 ml/min.

Detection: spectrophotometer at 265 nm.

Injection: 20 µl.

Run time: 3.5 times the retention time of bisacodyl.

Identification of impurities: use the chromatogram supplied with *bisacodyl for system suitability CRS* and the chromatogram obtained with reference solution (b) to identify the peaks due to impurities A, B, C, D and E.

Relative retention with reference to bisacodyl (retention time = about 13 min): impurity A = about 0.2; impurity B = about 0.4; impurity C = about 0.45; impurity D = about 0.8; impurity E = about 0.9; impurity F = about 2.6.

System suitability: reference solution (b):

- peak-to-valley ratio: minimum 1.5, where H_p = height above the baseline of the peak due to impurity E and H_v = height above the baseline of the lowest point of the curve separating this peak from the peak due to bisacodyl.

Limits:

- correction factor: for the calculation of content, multiply the peak area of impurity A by 0.7;
- impurities A, B: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.1 per cent);
- impurities C, E: for each impurity, not more than 5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.5 per cent);
- impurity D: not more than twice the area of the principal peak in the chromatogram obtained with reference solution (a) (0.2 per cent);
- impurity F: not more than 3 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.3 per cent);
- unspecified impurities: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.10 per cent);
- total: not more than 10 times the area of the principal peak in the chromatogram obtained with reference solution (a) (1.0 per cent);
- disregard limit: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.05 per cent).

Loss on drying (2.2.32): maximum 0.5 per cent, determined on 0.500 g by drying in an oven at 105 °C.

Sulphated ash (2.4.14): maximum 0.1 per cent, determined on 1.0 g.

ASSAY

Dissolve 0.300 g in 60 ml of *anhydrous acetic acid R*. Titrate with 0.1 *M perchloric acid* determining the end-point potentiometrically (2.2.20).

1 ml of 0.1 M perchloric acid is equivalent to 36.14 mg of $\rm C_{22}H_{19}NO_4$.

STORAGE

Protected from light.

IMPURITIES

Specified impurities: A, B, C, D, E, F.

- A. R1 = R3 = OH, R2 = H: 4,4'-(pyridin-2-ylmethylene)diphenol,
- B. R1 = H, R2 = R3 = OH: 2-[(RS)-(4-hydroxyphenyl)(pyridin-2-yl)methyl]phenol,
- C. R1 = OH, R2 = H, R3 = O-CO-CH₃: 4-[(RS)-(4-hydroxyphenyl)(pyridin-2-yl)methyl]phenyl acetate,
- E. R1 = H, R2 = R3 = O-CO-CH₃: 2-[(RS)-[4-(acetyloxy)-phenyl](pyridin-2-yl)methyl]phenyl acetate,
- D. unknown structure,
- F. unknown structure.

01/2008:0012 corrected 6.0

BISMUTH SUBCARBONATE

Bismuthi subcarbonas

DEFINITION

Content: 80.0 per cent to 82.5 per cent of Bi (A_r 209.0) (dried substance).

CHARACTERS

Appearance: white or almost white powder.

Solubility: practically insoluble in water and in ethanol (96 per cent). It dissolves with effervescence in mineral acids.

IDENTIFICATION

A. It gives the reaction of carbonates (2.3.1).

B. It gives the reactions of bismuth (2.3.1).

TESTS

Solution S. Shake 5.0 g with 10 ml of *water R* and add 20 ml of *nitric acid R*. Heat to dissolve, cool and dilute to 100 ml with *water R*.

Appearance of solution. Solution S is not more opalescent than reference suspension II (2.2.1) and is colourless (2.2.2, Method II).

Chlorides (2.4.4): maximum 500 ppm.

To 6.6 ml of solution S add 4 ml of *nitric acid R* and dilute to 50 ml with water R.

Nitrates: maximum 0.4 per cent.

To 0.25 g in a 125 ml conical flask, add 20 ml of water R, 0.05 ml of indigo carmine solution R1 and then, as a single addition but with caution, 30 ml of sulphuric acid R. Titrate immediately with indigo carmine solution R1 until a stable blue colour is obtained. Not more than n ml of the titrant is required, n being the volume corresponding to 1 mg of NO₃.

Alkali and alkaline-earth metals: maximum 1.0 per cent.

To 1.0 g add 10 ml of *water R* and 10 ml of *acetic acid R*. Boil for 2 min, cool and filter. Wash the residue with 20 ml of *water R*. To the combined filtrate and washings add 2 ml of *dilute hydrochloric acid R* and 20 ml of *water R*. Boil and pass *hydrogen sulphide R* through the boiling solution until no further precipitate is formed. Filter, wash the residue with *water R*, evaporate the combined filtrate and washings to dryness on a water-bath and add 0.5 ml of *sulphuric acid R*. Ignite gently and allow to cool. The residue weighs a maximum of 10 mg.

Arsenic (2.4.2, Method A): maximum 5 ppm.

To 0.5 g in a distillation flask add 5 ml of water R and 7 ml of sulphuric acid R, allow to cool and add 5 g of reducing mixture R and 10 ml of hydrochloric acid R. Heat the contents of the flask to boiling gradually over 15-30 min and continue heating at such a rate that the distillation proceeds steadily until the volume in the flask is reduced by half or until 5 min after the air-condenser has become full of steam. It is important that distillation be discontinued before fumes of sulphur trioxide appear. Collect the distillate in a tube containing 15 ml of water R cooled in ice-water. Wash down the condenser with water R and dilute the distillate to 25 ml with the same solvent. Prepare the standard using a mixture of 2.5 ml of arsenic standard solution (1 ppm As) R and 22.5 ml of water R.

Copper: maximum 50 ppm.

To 5 ml of solution S, add 2 ml of *ammonia R* and dilute to 50 ml with *water R*. Filter. To 10 ml of the filtrate add 1 ml of a 1 g/l solution of *sodium diethyldithiocarbamate R*. The solution is not more intensely coloured than a standard prepared at the same time in the same manner using a mixture of 0.25 ml of *copper standard solution (10 ppm Cu) R* and 9.75 ml of *water R* instead of 10 ml of the filtrate.

Lead: maximum 20.0 ppm.

Atomic absorption spectrometry (2.2.23, Method II).

Test solution. Dissolve 12.5 g in 75 ml of a mixture of equal volumes of *lead-free nitric acid R* and *water R*. Boil for 1 min, cool and dilute to 100.0 ml with *water R*.

Reference solutions. Prepare the reference solutions using appropriate quantities of lead standard solution and a 37 per cent *V/V* solution of *lead-free nitric acid R*.

Source: lead hollow-cathode lamp.

Wavelength: 283.3 nm (depending on the apparatus, the line at 217.0 nm may be used).

Atomisation device: air-acetylene flame.

Silver: maximum 25 ppm.

To 2.0 g add 1 ml of *water R* and 4 ml of *nitric acid R*. Heat gently until dissolved and dilute to 11 ml with *water R*. Cool and add 2 ml of *1 M hydrochloric acid*. Allow to stand protected from light for 5 min. Any opalescence in the solution is not more intense than that in a standard prepared at the same time in the same manner using a mixture of

10 ml of silver standard solution (5 ppm Ag) R, 1 ml of nitric acid R and 2 ml of 1 M hydrochloric acid.

Loss on drying (2.2.32): maximum 1.0 per cent, determined on 1.000 g by drying in an oven at 105 °C.

ASSAY

Dissolve 0.500 g in 3 ml of *nitric acid R* and dilute to 250 ml with *water R*. Carry out the complexometric titration of bismuth (2.5.11).

1 ml of 0.1 M sodium edetate is equivalent to 20.90 mg of Bi.

STORAGE

Protected from light.

01/2008:1493 corrected 6.0

BISMUTH SUBGALLATE

Bismuthi subgallas

C₇H₅BiO₆ [149-91-7]

 $M_{\rm r}$ 394.1

DEFINITION

Complex of bismuth and gallic acid.

Content: 48.0 per cent to 51.0 per cent of Bi (A_r 209.0) (dried substance).

CHARACTERS

Appearance: yellow powder.

Solubility: practically insoluble in water and in alcohol. It dissolves in mineral acids with decomposition and in solutions of alkali hydroxides, producing a reddish-brown liquid.

IDENTIFICATION

- A. Mix 0.1 g with 5 ml of *water R* and 0.1 ml of *phosphoric acid R*. Heat to boiling and maintain boiling for 2 min. Cool and filter. To the filtrate, add 1.5 ml of *ferric chloride solution R1*, a blackish-blue colour develops.
- B. It gives reaction (b) of bismuth (2.3.1).

TESTS

Solution S. In a porcelain or quartz dish, ignite 1.0 g, increasing the temperature very gradually. Heat in a muffle furnace at 600 ± 50 °C for 2 h. Cool and dissolve the residue with warming in 4 ml of a mixture of equal volumes of *lead-free nitric acid R* and *water R* and dilute to 20 ml with *water R*.

Acidity. Shake 1.0 g with 20 ml of *water R* for 1 min and filter. To the filtrate add 0.1 ml of *methyl red solution R*. Not more than 0.15 ml of *0.1 M sodium hydroxide* is required to change the colour of the indicator to yellow.

Chlorides (2.4.4): maximum 200 ppm.

To 0.5 g add 10 ml of *dilute nitric acid R*. Heat on a water-bath for 5 min and filter. Dilute 5 ml of the filtrate to 15 ml with *water R*.